Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Herramienta de IA identifica nuevas firmas genéticas para personalizar terapias contra cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 15 Nov 2024
Print article
Imagen: Los modelos de inteligencia artificial pueden personalizar las terapias inmunitarias en pacientes oncológicos (Foto cortesía de 123RF)
Imagen: Los modelos de inteligencia artificial pueden personalizar las terapias inmunitarias en pacientes oncológicos (Foto cortesía de 123RF)

El cáncer de pulmón y el cáncer de vejiga se encuentran entre los cánceres más comúnmente diagnosticados en todo el mundo. Los investigadores han desarrollado modelos de inteligencia artificial (IA) diseñados para personalizar terapias inmunológicas para pacientes oncológicos.

En un nuevo estudio, los científicos del Instituto de Ciencia de Datos e Inteligencia Artificial (DATAI) de la Universidad de Navarra (Pamplona, España) analizaron datos de más de 3.000 pacientes diagnosticados con cáncer de pulmón y vejiga. Mediante el empleo de modelos de aprendizaje automático, los investigadores descubrieron nuevas firmas genéticas exclusivas de cada etapa de estos cánceres y crearon un sistema conocido como el "índice IFIT" (Índice de "Inmunidad Física"). Este sistema tiene como objetivo personalizar las terapias para mejorar su eficacia. El índice IFIT mide la aptitud inmunológica de un paciente, clasificándolo en función de su riesgo en varias etapas de la enfermedad. Este enfoque permite predecir cómo responderá un paciente al tratamiento en función de la actividad de su sistema inmunológico en diferentes etapas del tratamiento del cáncer.

La investigación, publicada en el Journal for ImmunoTherapy of Cancer, se basa en un análisis del ciclo de inmunidad del cáncer (CIC), que analiza cómo las señales del sistema inmunitario afectan al éxito de la inmunoterapia. Utilizando este marco y herramientas de IA, los investigadores identificaron patrones específicos de actividad celular vinculados a las etapas moleculares de la enfermedad y desarrollaron el índice IFIT. Esta innovación destaca el potencial de la IA para avanzar en la medicina personalizada y ofrece nuevas perspectivas en la lucha contra el cáncer. El equipo también indicó que esta técnica seguirá perfeccionándose a través de futuros estudios colaborativos que involucren otros tipos de cáncer.

“La inmunoterapia representa una de las fronteras más prometedoras en la lucha contra el cáncer y, mediante el uso de modelos de inteligencia artificial, podemos afinar aún más los tratamientos en función del perfil inmunológico de cada paciente”, afirma Rubén Armañanzas, líder del laboratorio de Medicina Digital de DATAI y uno de los autores principales del estudio.

 

Miembro Oro
ANA & ENA Screening Assays
ANA and ENA Assays
Miembro Oro
CONTROLADOR DE PIPETA SEROLÓGICA
PIPETBOY GENIUS
New
Lysing Machine
FastPrep-24 5G
New
Hematology Analyzer
BH-6180

Print article

Canales

Inmunología

ver canal
Imagen: Concepto para el dispositivo. Las células B de memoria capaces de unir el virus de la influenza permanecen atascadas en los canales a pesar de las fuerzas de corte (Foto cortesía de Steven George/UC Davis)

Dispositivo basado en chip microfluídico mide inmunidad viral

Cada invierno surge una nueva variante de la gripe que supone un reto para el sistema inmunitario. Las personas que ya han sido infectadas o vacunadas contra la gripe pueden tener cierto nivel de protección,... Más

Microbiología

ver canal
Imagen: el sistema QuickMIC (foto cortesía de Gradientech)

Sistema PSA ultrarrápido ofrece resultados críticos para pacientes con sepsis

La sepsis es una enfermedad grave y una de las principales causas de muerte en los hospitales. Cada año, millones de adultos son diagnosticados con sepsis y también es una de las principales... Más

Tecnología

ver canal
Imagen: métodos de muestreo de proteínas de película de lágrimas humanas (Foto cortesía de Clinical Proteomics. 2024, 13 de marzo; 21: 23. doi: 10.1186/s12014-024-09475-8)

Nuevo método analiza lágrimas para detectar enfermedades de forma temprana

Los fluidos corporales, incluidas las lágrimas y la saliva, transportan proteínas que se liberan desde diferentes partes del cuerpo. La presencia de proteínas específicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.