Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Herramienta de IA diagnostica cáncer, guía tratamientos y predice supervivencia en diversos tipos de cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 17 Sep 2024
Print article
Imagen: El modelo de IA similar a ChatGPT puede diagnosticar el cáncer, guiar la elección del tratamiento, predecir la supervivencia en múltiples tipos de cáncer (cortesía de la foto de 123RF)
Imagen: El modelo de IA similar a ChatGPT puede diagnosticar el cáncer, guiar la elección del tratamiento, predecir la supervivencia en múltiples tipos de cáncer (cortesía de la foto de 123RF)

Los modelos actuales de inteligencia artificial (IA) suelen estar especializados, diseñados para tareas específicas como la detección de cáncer o la predicción de la genética tumoral, y están limitados a unos pocos tipos de cáncer. Los científicos han desarrollado ahora un modelo de IA versátil, similar a ChatGPT, que puede manejar una variedad de tareas de diagnóstico en múltiples tipos de cáncer. Este avanzado sistema de IA, que se detalla en la edición del 4 de septiembre de Nature, supone una mejora significativa con respecto a muchos modelos de diagnóstico del cáncer existentes.

Desarrollado por un equipo de la Facultad de Medicina de Harvard (Boston, MA, EUA), este nuevo modelo, denominado CHIEF por sus siglas en inglés, puede realizar una amplia gama de tareas y ha sido probado en 19 tipos de cáncer. A diferencia de otros modelos de IA de diagnóstico médico fundamentales que han surgido, CHIEF es único en su capacidad de predecir los resultados de los pacientes y ha sido validado en varias cohortes de pacientes internacionales. CHIEF ha sido entrenado utilizando un conjunto de datos masivo de 15 millones de imágenes no etiquetadas, segmentadas en áreas específicas de interés y refinadas aún más utilizando 60.000 imágenes de portaobjetos completos que abarcan una amplia gama de tejidos, incluidos los de pulmón, mama, próstata y muchos otros. Este entrenamiento permite al modelo analizar regiones específicas dentro de una imagen mientras considera todo el portaobjetos, lo que promueve una interpretación más integral de las imágenes.

Al analizar diapositivas digitales de tejidos tumorales, CHIEF se destaca en la detección de células cancerosas, la predicción de perfiles moleculares y la evaluación de la supervivencia del paciente en distintos tipos de cáncer. También puede identificar características cruciales dentro del microambiente tumoral que predicen cómo un paciente podría responder a varios tratamientos como la quimioterapia o la inmunoterapia. Después de su extensa fase de entrenamiento, CHIEF se probó utilizando más de 19.400 imágenes de diapositivas completas de 32 conjuntos de datos independientes provenientes de 24 hospitales en todo el mundo. En estas pruebas, CHIEF superó a los modelos de IA existentes hasta en un 36% en tareas como la detección de células cancerosas, la identificación de orígenes de tumores, la predicción de resultados del paciente y el reconocimiento de marcadores genéticos que influyen en la respuesta al tratamiento.

La adaptabilidad de CHIEF le permite rendir de manera constante, independientemente de cómo se obtuvieron las muestras de tumor o de la técnica de digitalización utilizada. Esta flexibilidad hace que sea aplicable en diversos entornos clínicos, un avance significativo con respecto a los modelos anteriores, que a menudo solo sobresalían con ciertos tipos de muestras. Además, esta herramienta ha descubierto nuevas características tumorales relacionadas con la supervivencia de los pacientes, lo que resalta su potencial no solo para mejorar las evaluaciones del cáncer, sino también para identificar a pacientes que podrían no beneficiarse de los tratamientos estándar. Esta innovación subraya el papel cada vez mayor de la IA en la mejora del diagnóstico y el tratamiento del cáncer.

“Nuestra ambición era crear una plataforma de inteligencia artificial ágil y versátil, similar a ChatGPT, que pudiera realizar una amplia gama de tareas de evaluación del cáncer”, afirmó el autor principal del estudio, Kun-Hsing Yu, profesor adjunto de informática biomédica en el Instituto Blavatnik de la Escuela de Medicina de Harvard. “Nuestro modelo resultó ser muy útil en múltiples tareas relacionadas con la detección, el pronóstico y la respuesta al tratamiento del cáncer en múltiples tipos de cáncer. Si se valida más y se implementa ampliamente, nuestro enfoque, y otros enfoques similares al nuestro, podrían identificar de manera temprana a los pacientes con cáncer que podrían beneficiarse de tratamientos experimentales dirigidos a ciertas variaciones moleculares, una capacidad que no está disponible de manera uniforme en todo el mundo”.

Enlaces relacionados:
Facultad de Medicina de Harvard

Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Miembro Plata
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: el estudio validó el sistema de análisis de sangre automatizado y escalable Lumipulse P-Tau21 (foto cortesía de Fujirebio)

Análisis de sangre para detección temprana del Alzheimer con precisión de 90 %

La enfermedad de Alzheimer (EA) es una enfermedad debilitante y una de las principales causas de discapacidad y muerte en todo el mundo. Actualmente, la disponibilidad de herramientas diagnósticas... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: ilustración esquemática del chip (foto cortesía de Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre

El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.