Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Técnica de tinción basada en IA es tan precisa como la histopatología tradicional al evaluar de biomarcadores de cáncer de mama

Por el equipo editorial de LabMedica en español
Actualizado el 01 Nov 2022
Print article
Imagen: Tinción virtual de HER2 de secciones de tejido mamario sin etiquetar utilizando aprendizaje profundo (Fotografía cortesía de UCLA)
Imagen: Tinción virtual de HER2 de secciones de tejido mamario sin etiquetar utilizando aprendizaje profundo (Fotografía cortesía de UCLA)

El cáncer de mama es una de las principales causas de muerte por cáncer entre las mujeres a nivel mundial. Tras el diagnóstico de cáncer de mama, la prueba de HER2, una proteína que promueve el crecimiento de células cancerosas, se lleva a cabo de forma rutinaria para ayudar a evaluar el pronóstico del cáncer y hacer planes de tratamiento dirigidos a HER2. Un procedimiento de prueba estándar de HER2 incluye tomar la biopsia de mama, preparar la muestra de tejido en portaobjetos microscópicos delgados, teñir los portaobjetos con reactivos químicos específicos que resaltan las proteínas HER2 e inspeccionar los portaobjetos teñidos bajo un microscopio óptico para proporcionar el informe patológico. Sin embargo, este procedimiento estándar de tinción de HER2 adolece de altos costos y un largo tiempo de respuesta, ya que el proceso de tinción requiere laboriosos pasos de tratamiento de la muestra (generalmente ~24 horas) realizados por expertos en un laboratorio dedicado. Los investigadores ahora han desarrollado un método de tinción computacional impulsado por el aprendizaje profundo, que realiza la tinción de HER2 sin necesidad de productos químicos.

El equipo de investigación de la UCLA (Los Ángeles, CA, EUA) capturó la información de autofluorescencia del tejido mamario sin teñir, que las estructuras biológicas emiten naturalmente cuando absorben luz. Además, entrenaron una red neuronal profunda que transforma rápidamente estas imágenes de autofluorescencia sin tinción en imágenes histológicas virtuales, revelando el color y el contraste precisos como si las secciones de tejido estuvieran teñidas químicamente para HER2. Este proceso de tinción computacional toma solo unos minutos por muestra y no necesita instalaciones costosas ni productos químicos tóxicos. Usando solo una computadora, la tinción de HER2 podría lograrse de manera mucho más rápida y rentable, acelerando las evaluaciones y el tratamiento del cáncer de mama.

Los patólogos certificados por la junta validaron a ciegas esta técnica de tinción de HER2 virtual basada en IA en términos tanto de su valor de diagnóstico como de la calidad de la tinción. Los patólogos confirmaron que las imágenes generadas por aprendizaje profundo brindan la precisión diagnóstica equivalente para la evaluación de HER2 y tienen una calidad de tinción comparable a las imágenes estándar teñidas químicamente en el laboratorio. Este método de tinción de HER2 virtual, impulsado por aprendizaje profundo, elimina la necesidad de procedimientos de tinción de HER2 costosos, laboriosos y lentos realizados por expertos en histología y podría extenderse a la tinción de otros biomarcadores relacionados con el cáncer para acelerar el flujo de trabajo de diagnóstico e histopatología tradicional en entornos clínicos.

Enlaces relacionados:
UCLA

Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Biological Indicator Vials
BI-O.K.

Print article

Canales

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el método basado en IA puede detectar con mayor precisión la resistencia a los antibióticos en bacterias mortales, como la tuberculosis y el estafilis (fotografía cortesía de Adobe Stock)

Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos

Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... Más

Tecnología

ver canal
Imagen: ilustración esquemática del chip (foto cortesía de Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre

El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.