Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Técnica de tinción basada en IA es tan precisa como la histopatología tradicional al evaluar de biomarcadores de cáncer de mama

Por el equipo editorial de LabMedica en español
Actualizado el 01 Nov 2022
Print article
Imagen: Tinción virtual de HER2 de secciones de tejido mamario sin etiquetar utilizando aprendizaje profundo (Fotografía cortesía de UCLA)
Imagen: Tinción virtual de HER2 de secciones de tejido mamario sin etiquetar utilizando aprendizaje profundo (Fotografía cortesía de UCLA)

El cáncer de mama es una de las principales causas de muerte por cáncer entre las mujeres a nivel mundial. Tras el diagnóstico de cáncer de mama, la prueba de HER2, una proteína que promueve el crecimiento de células cancerosas, se lleva a cabo de forma rutinaria para ayudar a evaluar el pronóstico del cáncer y hacer planes de tratamiento dirigidos a HER2. Un procedimiento de prueba estándar de HER2 incluye tomar la biopsia de mama, preparar la muestra de tejido en portaobjetos microscópicos delgados, teñir los portaobjetos con reactivos químicos específicos que resaltan las proteínas HER2 e inspeccionar los portaobjetos teñidos bajo un microscopio óptico para proporcionar el informe patológico. Sin embargo, este procedimiento estándar de tinción de HER2 adolece de altos costos y un largo tiempo de respuesta, ya que el proceso de tinción requiere laboriosos pasos de tratamiento de la muestra (generalmente ~24 horas) realizados por expertos en un laboratorio dedicado. Los investigadores ahora han desarrollado un método de tinción computacional impulsado por el aprendizaje profundo, que realiza la tinción de HER2 sin necesidad de productos químicos.

El equipo de investigación de la UCLA (Los Ángeles, CA, EUA) capturó la información de autofluorescencia del tejido mamario sin teñir, que las estructuras biológicas emiten naturalmente cuando absorben luz. Además, entrenaron una red neuronal profunda que transforma rápidamente estas imágenes de autofluorescencia sin tinción en imágenes histológicas virtuales, revelando el color y el contraste precisos como si las secciones de tejido estuvieran teñidas químicamente para HER2. Este proceso de tinción computacional toma solo unos minutos por muestra y no necesita instalaciones costosas ni productos químicos tóxicos. Usando solo una computadora, la tinción de HER2 podría lograrse de manera mucho más rápida y rentable, acelerando las evaluaciones y el tratamiento del cáncer de mama.

Los patólogos certificados por la junta validaron a ciegas esta técnica de tinción de HER2 virtual basada en IA en términos tanto de su valor de diagnóstico como de la calidad de la tinción. Los patólogos confirmaron que las imágenes generadas por aprendizaje profundo brindan la precisión diagnóstica equivalente para la evaluación de HER2 y tienen una calidad de tinción comparable a las imágenes estándar teñidas químicamente en el laboratorio. Este método de tinción de HER2 virtual, impulsado por aprendizaje profundo, elimina la necesidad de procedimientos de tinción de HER2 costosos, laboriosos y lentos realizados por expertos en histología y podría extenderse a la tinción de otros biomarcadores relacionados con el cáncer para acelerar el flujo de trabajo de diagnóstico e histopatología tradicional en entornos clínicos.

Enlaces relacionados:
UCLA

Miembro Oro
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.