Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Analizan citogenética de neoplasias hematológicas con mapeo óptico del genoma

Por el equipo editorial de LabMedica en español
Actualizado el 02 Nov 2022
Print article
Imagen: La plataforma Saphyr de Bionano Genomics ofrece tecnologías de preparación de muestras, imágenes de ADN y análisis de datos genómicos, combinadas en un flujo de trabajo optimizado que permite identificar variantes estructurales y crear ensamblajes de genoma de novo (Fotografía cortesía de Bionano Genomics)
Imagen: La plataforma Saphyr de Bionano Genomics ofrece tecnologías de preparación de muestras, imágenes de ADN y análisis de datos genómicos, combinadas en un flujo de trabajo optimizado que permite identificar variantes estructurales y crear ensamblajes de genoma de novo (Fotografía cortesía de Bionano Genomics)

Las técnicas citogenéticas estándar de atención actuales para el análisis de neoplasias malignas hematológicas incluyen el cariotipo, la hibridación in situ con fluorescencia y el análisis de microarrays cromosómicos (CMA, por sus siglas en inglés), que requieren mucho trabajo y tiempo y costo prohibitivos, y a menudo no revelan la complejidad genética del tumor, demostrando la necesidad de tecnología alternativa para una mejor caracterización de estos tumores.

El mapeo óptico del genoma (OGM) ha surgido como una tecnología citogenómica, de próxima generación, que puede detectar todas las clases de variaciones estructurales (VE) a una resolución más alta que las técnicas estándar de atención (SOC). Recientemente, la tecnología ha ganado un gran impulso y ha sido evaluada en varios entornos, incluidos entornos prenatales, posnatales, neoplasias hematológicas y tumores sólidos, lo que demuestra una concordancia clínica del 100 % con el análisis citogenético tradicional.

Los científicos médicos del Colegio Médico de Georgia (Augusta, GA, EUA), realizaron un estudio de validación retrospectivo que incluyó 92 análisis (incluyendo réplicas), que representan 69 muestras únicas y bien caracterizadas que se recibieron en su laboratorio clínico para análisis citogenético con cariotipo y/o prueba FISH. Estos estaban compuestos por 59 neoplasias hematológicas que incluían 18 leucemias mieloides agudas (LMA) del adulto, 15 leucemias linfoides crónicas (LLC), 12 síndromes mielodisplásicos (SMD), seis mielomas de células plasmáticas, tres linfomas, tres trastornos mieloproliferativos/neoplasias mieloproliferativas y dos leucemias mieloides crónicas. Además, también se analizaron 10 muestras morfológicamente normales y citogenéticamente negativas para evaluar las tasas de verdaderos negativos/falsos positivos y calcular las métricas de desempeño.

El ADN de ultra alto peso molecular se aisló, marcó y procesó para su análisis en la plataforma Bionano Genomics Saphyr (Bionano Genomics Inc., San Diego, CA, EUA). Se descongeló una alícuota de aspirado de médula ósea congelada (650 μL) y se contaron las células usando un sistema HemoCue (HemoCue Holding AB, Ängelholm, Suecia).  El esqueleto de ADN se coloreó de azul con tinción de ADN y se cuantificó con kits de ensayo de ADN de doble cadena de alta sensibilidad Qubit. El ADN marcado se cargó en celdas de flujo de chips Saphyr para obtener imágenes ópticas. Se tomaron imágenes de las moléculas de ADN marcadas con fluorescencia en el instrumento Saphyr después de que las moléculas de ADN marcadas se linealizaran electroforéticamente en los arrays de nanocanales.

El equipo informó que las 69 muestras pasaron las métricas de control de calidad y las 59 muestras de neoplasias hematológicas lograron un N50 promedio (>150 kb) de 303 kb (±35), tasa de mapeo de 87,5% (±7,5%), densidad de etiqueta de 15,8/100 kb (±1,0) y cobertura media de 391× (±89). En total, se identificaron 86.306 VE en las 59 muestras, con un promedio de aproximadamente 1.462 VE por muestra. La OGM fue concordante en la identificación de 162 de 164 variantes, que se informaron con los métodos SOC actuales. La OGM detectó 59 de 60 aneuploidías, mientras que una pérdida de mosaico del cromosoma Y (en un caso complejo de LLC) no se detectó con la OGM.

De los 45 casos clasificados como simples, 35 tenían al menos una aberración genética reportada clínicamente, mientras que 10 fueron negativos tanto con el cariotipo como con la prueba FISH. En los 35 casos con aberraciones reportadas, la OGM detectó todas las variantes reportadas previamente y corrigió las interpretaciones incorrectas anteriores debido a la baja resolución del cariotipo en dos casos. La translocación, la eliminación intersticial y la duplicación se detectaron consistentemente desde una fracción de alelos del 25 % al ​​5 %.

Los autores concluyeron que su estudio mostró una sensibilidad del 98,7 % y una especificidad del 100 % para detectar VE informadas anteriormente con una combinación de métodos SOC. La mayor utilidad clínica de la OGM en las neoplasias malignas hematológicas fue establecida por múltiples informes donde se informó un 100 % de concordancia con múltiples métodos SOC. El estudio se publicó el 17 de octubre de 2022 en la revista Journal of Molecular Diagnostics.


Enlaces relacionados:
Colegio Médico de Georgia
Bionano Genomics
HemoCue Holding AB

Miembro Oro
CONTROLADOR DE PIPETA SEROLÓGICA
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: el estudio validó el sistema de análisis de sangre automatizado y escalable Lumipulse P-Tau21 (foto cortesía de Fujirebio)

Análisis de sangre para detección temprana del Alzheimer con precisión de 90 %

La enfermedad de Alzheimer (EA) es una enfermedad debilitante y una de las principales causas de discapacidad y muerte en todo el mundo. Actualmente, la disponibilidad de herramientas diagnósticas... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: ilustración esquemática del chip (foto cortesía de Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre

El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.