Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Patología 3D con IA mejora la precisión del pronóstico en pacientes con esófago de Barrett

Por el equipo editorial de LabMedica en español
Actualizado el 15 Aug 2024
Print article
Imagen: Ejemplos de secciones de imágenes 3D de una biopsia muestran cómo la patología 3D (izquierda) mejoró el diagnóstico en comparación con los métodos bidimensionales convencionales (derecha) (Foto cortesía de la UW College of Engineering)
Imagen: Ejemplos de secciones de imágenes 3D de una biopsia muestran cómo la patología 3D (izquierda) mejoró el diagnóstico en comparación con los métodos bidimensionales convencionales (derecha) (Foto cortesía de la UW College of Engineering)

El esófago de Barrett es una enfermedad en la que el revestimiento del esófago cambia debido al reflujo gastroesofágico crónico. Las personas con esófago de Barrett tienen un riesgo ligeramente aumentado de desarrollar cáncer de esófago y requieren endoscopias de vigilancia regulares. Durante estos procedimientos, los gastroenterólogos toman numerosas biopsias de los tejidos afectados. Luego, estas muestras se cortan en secciones delgadas y se colocan en portaobjetos de vidrio para su examen bajo un microscopio por patólogos. Sin embargo, las secciones de tejido que los patólogos observan representan solo alrededor del 1 % o menos de las biopsias reales y proporcionan solo una vista bidimensional, lo que puede ser engañoso. Los investigadores ahora están realizando estudios clínicos de tejidos archivados de pacientes con la afección para desarrollar métodos de patología computacional en 3D para la estratificación del riesgo de esófago de Barrett.

El equipo de investigación de la Facultad de Ingeniería de la Universidad de Washington (Seattle, Washington, EUA) ya había inventado métodos de patología en 3D para evaluar el riesgo de cáncer de próstata y cambió su enfoque hacia las aplicaciones gastrointestinales de sus tecnologías, incluida la evaluación del riesgo de cáncer de esófago en pacientes con esófago de Barrett. Su objetivo es demostrar que el análisis de conjuntos de datos de patología en 3D de biopsias endoscópicas completas mediante IA puede determinar mejor qué pacientes podrían progresar a cáncer de esófago y, por lo tanto, requerir un tratamiento más intensivo. El equipo está utilizando microscopía de lámina de luz de techo abierto para este propósito. Esta técnica innovadora permite la visualización microscópica en 3D de biopsias sin la necesidad de cortar, preservando toda la estructura del tejido.

Esta técnica de microscopía "sin portaobjetos" implica el uso de una lámina de luz y cámaras de alta velocidad para obtener imágenes de muestras de tejido teñidas con tintes fluorescentes y que se vuelven transparentes mediante un proceso llamado aclarado óptico. Una vez que se preparan los conjuntos de datos de patología en 3D, se emplea IA para resaltar las áreas más cruciales de la biopsia para la revisión del patólogo o para evaluar los tejidos de manera autónoma. En una investigación anterior publicada en Modern Pathology, el equipo introdujo un enfoque de aprendizaje profundo que demostró ser más eficiente para identificar neoplasias malignas en biopsias de esófago de Barrett que los métodos tradicionales, lo que redujo significativamente la cantidad de imágenes que los patólogos necesitan examinar. Además, el equipo está mejorando el proceso de entrenamiento del modelo de IA mediante el desarrollo de un avanzado sistema de clasificación de aprendizaje profundo con supervisión débil para analizar conjuntos de datos de patología en 3D.

“Estamos tratando de identificar a los pacientes con mayor riesgo para que puedan recibir tratamientos tempranos que podrían ser críticos para su supervivencia”, dijo el profesor Jonathan Liu, profesor de ingeniería mecánica, bioingeniería y medicina de laboratorio y patología en la Universidad de Washington. “En nuestras muestras de tejido archivadas, algunos pacientes progresaron a cáncer, y estamos tratando de detectar qué en sus tejidos podría haberlo predicho en las etapas más tempranas”.

Enlaces relacionados:
Facultad de Ingeniería de la UW

Miembro Oro
HISOPOS DE FIBRA FLOCADA
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.