Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Modelo de IA identifica etapas de tumores de mama con probabilidad de progresar a cáncer invasivo

Por el equipo editorial de LabMedica en español
Actualizado el 29 Jul 2024
Print article
Imagen: El modelo de IA puede distinguir diferentes etapas del CDIS a partir de imágenes de tejido mamario económicas y fácilmente disponibles (Foto cortesía de David A. Litman/Shutterstock)
Imagen: El modelo de IA puede distinguir diferentes etapas del CDIS a partir de imágenes de tejido mamario económicas y fácilmente disponibles (Foto cortesía de David A. Litman/Shutterstock)

El carcinoma ductal in situ (CDIS) es un tipo de tumor no invasivo que en ocasiones puede progresar a una forma más letal de cáncer de mama y representa aproximadamente el 25 % de todos los casos de cáncer de mama. Entre el 30 % y el 50 % de los pacientes con CDIS pueden desarrollar una etapa invasiva de cáncer, pero identificar qué tumores progresarán sigue siendo un desafío debido a la falta de biomarcadores conocidos. Las prácticas de diagnóstico actuales incluyen tinción múltiple o secuenciación de ARN de célula única para determinar las etapas de CDIS en muestras de tejido, pero estos métodos son costosos y no se utilizan ampliamente. Esto ha llevado a un posible sobretratamiento de pacientes con CDIS. Ahora, un nuevo modelo de inteligencia artificial (IA) puede distinguir diferentes etapas de CDIS a partir de imágenes de tejido mamario económicas y fácilmente disponibles.

El modelo desarrollado por un equipo interdisciplinario de investigadores del MIT (Cambridge, MA, EUA) y ETH Zurich (Zúrich, Suiza) fue entrenado y probado utilizando uno de los conjuntos de datos más grandes de su tipo, creado porque este tipo de imágenes de tejido son muy fáciles de obtener. Este modelo de IA podría potencialmente simplificar el proceso de diagnóstico para casos más simples de CDIS, reduciendo la dependencia de métodos que requieren mucha mano de obra y permitiendo a los clínicos centrarse más en los casos ambiguos. Anteriormente, el equipo descubrió que una técnica de imágenes de bajo costo llamada tinción de cromatina podría proporcionar información comparable a la obtenida mediante secuenciación de ARN unicelular, que es costosa. Hipotetizaron que combinar este método de tinción con un modelo de aprendizaje automático sofisticado podría proporcionar información detallada sobre las etapas del cáncer a un costo menor.

Compilaron un conjunto de datos de 560 imágenes de muestras de tejido de 122 pacientes a lo largo de tres etapas de la enfermedad para entrenar su modelo de IA. Este modelo aprende a representar el estado de cada célula dentro de una imagen para determinar la etapa del cáncer. Al reconocer que no todas las células indican la presencia de cáncer, el equipo diseñó el modelo para crear grupos de células con estados similares, identificando ocho estados distintos críticos para diagnosticar CDIS. Algunos estados sugieren una mayor probabilidad de cáncer invasivo. Sin embargo, aprendieron que conocer la proporción de cada estado celular no era suficiente; también era crucial entender cómo estas células están organizadas dentro del tejido. El modelo se mejoró para evaluar tanto la proporción como la disposición espacial de los estados celulares, mejorando así significativamente su precisión. En comparación con las evaluaciones patológicas tradicionales, el modelo mostró una alta concordancia en muchos casos. Para los casos menos definitivos, el modelo proporcionó información sobre características de las muestras de tejido, como la organización celular, que podría ayudar a los patólogos en sus diagnósticos. La versatilidad de este modelo sugiere aplicaciones potenciales más allá del cáncer de mama, como otros tipos de cáncer y enfermedades neurodegenerativas, áreas que los investigadores están explorando actualmente.

"Dimos el primer paso para comprender que deberíamos observar la organización espacial de las células al diagnosticar CDIS, y ahora hemos desarrollado una técnica que es escalable", dijo Caroline Uhler del MIT. “A partir de aquí, realmente necesitamos un estudio prospectivo. Trabajar con un hospital y llevar esto hasta la clínica será un importante paso adelante”.

Enlaces relacionados:
MIT
ETH Zúrich

Miembro Oro
ANALIZADOR DE VIABILIDAD/DENSIDAD CELULAR AUTOMATIZADO
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Canales

Inmunología

ver canal
Imagen: los hallazgos se basaron en pacientes del ensayo clínico de ADAURA de la terapia dirigida osimertinib para pacientes con CPCNP con mutaciones activadas por EGFR (foto cortesía del equipo multimedia de YSM)

Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer

En el continuo avance de la medicina personalizada, un nuevo estudio ha aportado evidencia que respalda el uso de una herramienta que detecta moléculas derivadas del cáncer en la sangre de... Más

Microbiología

ver canal
Imagen: representación esquemática que ilustra los hallazgos clave del estudio (foto cortesía de la UNIST)

Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas

La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.