Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Avances en IA permiten el salto a la patología 3D

Por el equipo editorial de LabMedica en español
Actualizado el 29 May 2024
Print article
Imagen: Tripath (extremo derecho) supera a la línea de base clínica actual (extremo izquierdo) y líneas de base de aprendizaje profundo 2D (medio) en la predicción del riesgo de recurrencia del cáncer (foto cortesía del Mass General Brigham)
Imagen: Tripath (extremo derecho) supera a la línea de base clínica actual (extremo izquierdo) y líneas de base de aprendizaje profundo 2D (medio) en la predicción del riesgo de recurrencia del cáncer (foto cortesía del Mass General Brigham)

El tejido humano es complejo, intrincado y naturalmente tridimensional. Sin embargo, las finas rodajas de tejido bidimensionales que suelen utilizar los patólogos para diagnosticar enfermedades proporcionan sólo una visión limitada de toda la complejidad del tejido. Como resultado, existe una tendencia creciente en patología hacia el examen del tejido en su forma tridimensional. Desafortunadamente, los conjuntos de datos de patología 3D pueden contener muchos más datos que sus homólogos 2D, lo que hace que el análisis manual no sea práctico. Ahora, los investigadores han desarrollado nuevos modelos de aprendizaje profundo capaces de utilizar conjuntos de datos de patología en 3D para predecir resultados clínicos.

Tripath, desarrollado por investigadores de Mass General Brigham (Somerville, MA, EUA) y sus colaboradores, tiene como objetivo superar los desafíos computacionales del procesamiento de tejido 3D y la predicción de resultados basados en características morfológicas 3D. En su estudio, el equipo utilizó dos técnicas de imágenes 3D de alta resolución para capturar imágenes de muestras seleccionadas de cáncer de próstata. Estos modelos fueron entrenados para evaluar el riesgo de recurrencia del cáncer de próstata mediante biopsias volumétricas de tejido humano.

Tripath ha demostrado un rendimiento superior en comparación con los patólogos tradicionales y ha superado a los modelos de aprendizaje profundo existentes que se basan en morfología 2D y cortes finos de tejido, al capturar de manera integral morfologías 3D de todo el volumen de tejido. Si bien es necesaria una mayor validación en conjuntos de datos más grandes antes de que este enfoque innovador pueda avanzar hacia la aplicación clínica, el equipo de investigación sigue siendo optimista sobre su potencial para mejorar la toma de decisiones clínicas.

"Nuestro enfoque subraya la importancia de analizar exhaustivamente todo el volumen de una muestra de tejido para una predicción precisa del riesgo del paciente, que es el sello distintivo de los modelos que desarrollamos y que sólo es posible con el paradigma de patología 3D", dijo el autor principal, Andrew H. Song, PhD. , de la División de Patología Computacional del Departamento de Patología del Mass General Brigham.

Enlaces relacionados:
Mass General Brigham

Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
H.pylori Test
Humasis H.pylori Card

Print article

Canales

Inmunología

ver canal
Imagen: los hallazgos se basaron en pacientes del ensayo clínico de ADAURA de la terapia dirigida osimertinib para pacientes con CPCNP con mutaciones activadas por EGFR (foto cortesía del equipo multimedia de YSM)

Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer

En el continuo avance de la medicina personalizada, un nuevo estudio ha aportado evidencia que respalda el uso de una herramienta que detecta moléculas derivadas del cáncer en la sangre de... Más

Microbiología

ver canal
Imagen: representación esquemática que ilustra los hallazgos clave del estudio (foto cortesía de la UNIST)

Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas

La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.