Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Avances en IA permiten el salto a la patología 3D

Por el equipo editorial de LabMedica en español
Actualizado el 29 May 2024
Print article
Imagen: Tripath (extremo derecho) supera a la línea de base clínica actual (extremo izquierdo) y líneas de base de aprendizaje profundo 2D (medio) en la predicción del riesgo de recurrencia del cáncer (foto cortesía del Mass General Brigham)
Imagen: Tripath (extremo derecho) supera a la línea de base clínica actual (extremo izquierdo) y líneas de base de aprendizaje profundo 2D (medio) en la predicción del riesgo de recurrencia del cáncer (foto cortesía del Mass General Brigham)

El tejido humano es complejo, intrincado y naturalmente tridimensional. Sin embargo, las finas rodajas de tejido bidimensionales que suelen utilizar los patólogos para diagnosticar enfermedades proporcionan sólo una visión limitada de toda la complejidad del tejido. Como resultado, existe una tendencia creciente en patología hacia el examen del tejido en su forma tridimensional. Desafortunadamente, los conjuntos de datos de patología 3D pueden contener muchos más datos que sus homólogos 2D, lo que hace que el análisis manual no sea práctico. Ahora, los investigadores han desarrollado nuevos modelos de aprendizaje profundo capaces de utilizar conjuntos de datos de patología en 3D para predecir resultados clínicos.

Tripath, desarrollado por investigadores de Mass General Brigham (Somerville, MA, EUA) y sus colaboradores, tiene como objetivo superar los desafíos computacionales del procesamiento de tejido 3D y la predicción de resultados basados en características morfológicas 3D. En su estudio, el equipo utilizó dos técnicas de imágenes 3D de alta resolución para capturar imágenes de muestras seleccionadas de cáncer de próstata. Estos modelos fueron entrenados para evaluar el riesgo de recurrencia del cáncer de próstata mediante biopsias volumétricas de tejido humano.

Tripath ha demostrado un rendimiento superior en comparación con los patólogos tradicionales y ha superado a los modelos de aprendizaje profundo existentes que se basan en morfología 2D y cortes finos de tejido, al capturar de manera integral morfologías 3D de todo el volumen de tejido. Si bien es necesaria una mayor validación en conjuntos de datos más grandes antes de que este enfoque innovador pueda avanzar hacia la aplicación clínica, el equipo de investigación sigue siendo optimista sobre su potencial para mejorar la toma de decisiones clínicas.

"Nuestro enfoque subraya la importancia de analizar exhaustivamente todo el volumen de una muestra de tejido para una predicción precisa del riesgo del paciente, que es el sello distintivo de los modelos que desarrollamos y que sólo es posible con el paradigma de patología 3D", dijo el autor principal, Andrew H. Song, PhD. , de la División de Patología Computacional del Departamento de Patología del Mass General Brigham.

Enlaces relacionados:
Mass General Brigham

Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunoassays and Calibrators
QMS Tacrolimus Immunoassays
New
Uric Acid and Blood Glucose Meter
URIT-10

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.