Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Inteligencia artificial detecta células tumorales viables para pronósticos precisos de cáncer de hueso después de quimioterapia

Por el equipo editorial de LabMedica en español
Actualizado el 03 May 2024
Print article
Imagen: La densidad de células tumorales viables después de la quimioterapia neoadyuvante evaluada con el modelo de aprendizaje profundo refleja el pronóstico del osteosarcoma (foto cortesía de la Universidad de Kyushu)
Imagen: La densidad de células tumorales viables después de la quimioterapia neoadyuvante evaluada con el modelo de aprendizaje profundo refleja el pronóstico del osteosarcoma (foto cortesía de la Universidad de Kyushu)

El osteosarcoma, el tumor óseo maligno más común, ha mostrado tasas de supervivencia mejoradas con cirugía y quimioterapia para casos localizados. Sin embargo, el pronóstico del osteosarcoma metastásico avanzado sigue siendo desalentador. Los métodos tradicionales de pronóstico posterior al tratamiento, basados en la evaluación de la necrosis o la evaluación de la proporción de tejido muerto dentro del tumor, sufren de variabilidad entre observadores y podrían no predecir con precisión la respuesta al tratamiento. Ahora los investigadores han desarrollado y validado un modelo de aprendizaje automático capaz de evaluar con precisión la densidad de células tumorales supervivientes en imágenes patológicas de osteosarcoma, ofreciendo una predicción de pronóstico más fiable.

El modelo, desarrollado por investigadores de la Universidad de Kyushu (Fukuoka, Japón), utiliza algoritmos de aprendizaje profundo para identificar células tumorales viables dentro de imágenes patológicas, coincidiendo con las habilidades de evaluación de patólogos expertos. Este enfoque supera las limitaciones del método tradicional para la evaluación de la tasa de necrosis, que calcula el área necrótica sin considerar el recuento de células individuales, lo que genera evaluaciones inconsistentes entre patólogos y una reflexión inadecuada de los efectos de la quimioterapia. En la fase 1 del estudio, el equipo entrenó el modelo de aprendizaje profundo para detectar células tumorales supervivientes y validó su rendimiento utilizando datos de pacientes. El modelo de IA fue tan competente en la detección de células tumorales viables en imágenes patológicas como los patólogos expertos.

En la fase 2, los investigadores se centraron en la supervivencia específica de la enfermedad y la supervivencia libre de metástasis. Mientras que la supervivencia específica de la enfermedad rastrea la duración después del diagnóstico o tratamiento sin muerte causada directamente por la enfermedad, la supervivencia libre de metástasis monitorea el tiempo posterior al tratamiento sin que las células cancerosas se propaguen a partes distantes del cuerpo. También examinaron la correlación entre la densidad de células tumorales viables estimada por IA y el pronóstico. Los hallazgos revelaron que el rendimiento de detección y la precisión del modelo de IA eran comparables a los del patólogo, además de una buena reproducibilidad. Luego, el equipo dividió a los pacientes en grupos según si la densidad de células tumorales viables era superior o inferior a 400/mm2. Descubrieron que una mayor densidad se correlacionaba con un peor pronóstico, mientras que una menor densidad indicaba un mejor resultado.

El equipo descubrió que la tasa de necrosis no se asociaba con la supervivencia específica de la enfermedad ni con la supervivencia libre de metástasis. Un análisis más detallado de casos individuales mostró que la densidad de células tumorales viables estimada por IA es un predictor de pronóstico más confiable que la tasa de necrosis. Estos hallazgos sugieren que al incorporar IA en el análisis de imágenes patológicas, este método mejora la precisión de la detección, minimiza la variabilidad entre los evaluadores y ofrece evaluaciones rápidas. La estimación de la densidad de células tumorales viables, que indica el potencial de proliferación de las células después de la quimioterapia, surge como un indicador superior de la eficacia del tratamiento sobre la evaluación tradicional de la tasa de necrosis. Este modelo de IA promete avances significativos en entornos clínicos después de una validación más amplia para facilitar su aplicación generalizada.

"Este nuevo enfoque tiene el potencial de mejorar la precisión del pronóstico de los pacientes con osteosarcoma tratados con quimioterapia", afirmó el Dr. Makoto Endo, profesor de Cirugía Ortopédica en el Hospital Universitario de Kyushu. “En el futuro, pretendemos aplicar activamente la IA a enfermedades raras como el osteosarcoma, que han experimentado avances limitados en epidemiología, patogénesis y etiología. A pesar del paso de las décadas, particularmente en las estrategias de tratamiento, sigue siendo difícil lograr avances sustanciales. Al aplicar la IA al problema, esto finalmente podría cambiar”.

Enlaces relacionados:
Universidad de Kyushu

Miembro Oro
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Quantitative Immunoassay Analyzer
AS050
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: QScout CBC dará un recuento de sangre completo en 2 minutos a partir de punción en el dedo o sangre venosa (Foto cortesía de Ad Astra Diagnostics)

Sistema de diagnóstico de hemograma completo y sepsis busca resultados más rápidos, tempranos y fáciles

Cada hora es crucial para proteger a los pacientes de las infecciones, pero actualmente existen herramientas limitadas para ayudar a un diagnóstico temprano antes de que los pacientes lleguen al hospital.... Más

Inmunología

ver canal
Imagen: Se inicia una respuesta inmune cuando una célula presentadora de antígeno (rosa) presenta material extraño a una célula T (azul) (Foto cortesía de JAX)

Método de imágenes mapea conexiones entre células inmunes para predecir supervivencia de pacientes con cáncer

Un tumor en crecimiento se ve influenciado no sólo por las propias células tumorales, sino también por el tejido circundante, que altera su biología. Las células inmunitarias se comunican transfiriendo... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.