Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Red neuronal reconoce cáncer de mama en muestras histológicas con 100 % de precisión

Por el equipo editorial de LabMedica en español
Actualizado el 20 Feb 2024
Print article
Imagen: La red neuronal "atenta" reconoce el cáncer de mama con 96 % de precisión (Fotografía cortesía de la Universidad RUDN)
Imagen: La red neuronal "atenta" reconoce el cáncer de mama con 96 % de precisión (Fotografía cortesía de la Universidad RUDN)

La probabilidad de un resultado favorable para una paciente con cáncer de mama está muy influenciada por la etapa en la que se diagnostica el cáncer. El examen histológico es el punto de referencia para el diagnóstico, pero su confiabilidad puede verse afectada por interpretaciones subjetivas y la calidad de la muestra de tejido. Las imprecisiones en estos exámenes pueden conducir a diagnósticos incorrectos. Ahora, un equipo de matemáticos ha desarrollado un modelo de aprendizaje automático que mejora significativamente la precisión de la identificación del cáncer en imágenes histológicas. Lo más destacado de este modelo es la incorporación de un módulo adicional que aumenta la capacidad de "atención" de la red neuronal, permitiéndole alcanzar una precisión casi perfecta.

Los matemáticos de la Universidad RUDN (Moscú, Rusia) realizaron pruebas en varias redes neuronales convolucionales y las complementaron con dos módulos de atención convolucionales. Estos módulos son cruciales para detectar objetos dentro de las imágenes. El modelo se sometió a entrenamiento y pruebas utilizando el conjunto de datos BreakHis, que comprende casi 10.000 imágenes histológicas a varias escalas, procedentes de 82 pacientes. El rendimiento más impresionante provino de un modelo que combinó la red convolucional DenseNet211 con los módulos de atención, logrando una notable tasa de precisión del 99,6 %. El equipo de investigación observó que la detección de formaciones cancerosas se ve afectada por la escala de la imagen. Esto se debe a que las imágenes difieren en calidad en distintos niveles de zoom y las formaciones cancerosas aparecen de manera diferente. Por lo tanto, durante la aplicación práctica, seleccionar la escala adecuada para el análisis de imágenes debe ser una consideración crítica.

“La clasificación informática de las imágenes histológicas reducirá la carga de los médicos y aumentará la precisión de las pruebas. Estas tecnologías mejorarán el tratamiento y el diagnóstico del cáncer de mama. Los métodos de aprendizaje profundo han mostrado resultados prometedores en los problemas de análisis de imágenes médicas en los últimos años”, afirmó Ammar Muthanna, Ph.D., director del Centro Científico para el Modelado de Redes Inalámbricas 5G de la Universidad RUDN. “Los módulos de atención del modelo mejoraron la extracción de características y el desempeño general del modelo. Con su ayuda, el modelo se centró en áreas importantes de la imagen y resaltó la información necesaria. Muestra la importancia de los mecanismos de atención en el análisis de imágenes médicas”.

Enlaces relacionados:
Universidad RUDN

New
Miembro Oro
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Auto-Chemistry Analyzer
CS-1200
New
Lab Sample Rotator
H5600 Revolver

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.