Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




IA predice con precisión resultados del cáncer a partir de muestras de tejido

Por el equipo editorial de LabMedica en español
Actualizado el 10 Jan 2024
Print article
Imagen: El modelo de IA analiza la organización espacial celular para hacer diagnósticos y pronósticos del paciente (Fotografía cortesía de UT Southwestern)
Imagen: El modelo de IA analiza la organización espacial celular para hacer diagnósticos y pronósticos del paciente (Fotografía cortesía de UT Southwestern)

Los patólogos suelen examinar las muestras de tejido de los pacientes en portaobjetos, un proceso integral para el diagnóstico. Este método tradicional, aunque eficaz, requiere mucho tiempo y está sujeto a variabilidad en las interpretaciones entre diferentes patólogos. Además, algunos detalles sutiles en las imágenes de patología podrían escapar a la observación humana, pero podrían contener información crítica sobre el estado de salud de un paciente. En los últimos años, se han desarrollado varios modelos de inteligencia artificial (IA) para realizar determinadas tareas usualmente realizadas por los patólogos, como clasificar tipos de células o medir las interacciones celulares en función de la proximidad. Sin embargo, estos modelos no han capturado completamente los aspectos más complejos del análisis de imágenes de tejidos que realizan los patólogos, incluido el reconocimiento de disposiciones espaciales celulares complejas y el filtrado de "ruidos" de imágenes irrelevantes que podrían distorsionar las interpretaciones. Para abordar esta brecha, los investigadores han introducido un modelo innovador de IA que es capaz de examinar la organización espacial de las células dentro de muestras de tejido, ofreciendo predicciones precisas sobre los resultados de los pacientes con cáncer y nuevas perspectivas para el pronóstico del cáncer asistido por IA y planes de tratamiento personalizados.

Esta herramienta de inteligencia artificial, denominada Ceograph, creada por investigadores del UT Southwestern Medical Center (Dallas, TX, EUA), imita el enfoque adoptado por los patólogos para examinar portaobjetos de tejido. Comienza identificando las células y sus respectivas posiciones dentro de la imagen. Luego clasifica los tipos de células y delinea sus formas y distribuciones espaciales, creando un mapa completo donde se detallan para su análisis la disposición, dispersión e interacciones entre las células. El equipo validó Ceograph en tres escenarios clínicos utilizando portaobjetos de patología. En un caso, Ceograph distinguió entre dos tipos de cáncer de pulmón: adenocarcinoma y carcinoma de células escamosas. En otro, midió el riesgo de progresión de afecciones orales potencialmente cancerosas a malignidad. Finalmente, identificó a los pacientes con cáncer de pulmón con mayor probabilidad de beneficiarse de los inhibidores del receptor del factor de crecimiento epidérmico.

En cada escenario, el desempeño de Ceograph en la predicción de los resultados de los pacientes superó a los métodos tradicionales. En particular, los conocimientos sobre la organización espacial celular proporcionados por Ceograph no solo son interpretables sino que también arrojan luz sobre las implicaciones biológicas de las distintas interacciones espaciales entre células individuales. Estos avances resaltan el papel cada vez más vital que puede desempeñar la IA en la atención médica, particularmente en la mejora de la precisión y eficiencia de los análisis patológicos. Esta tecnología promete perfeccionar las estrategias preventivas para personas con alto riesgo y adaptar las opciones de tratamiento para satisfacer las necesidades únicas de cada paciente.

"La organización espacial celular es como un complejo rompecabezas en el que cada célula sirve como una pieza única, que encaja meticulosamente para formar un tejido cohesionado o una estructura de órgano", dijo el líder del estudio, Guanghua Xiao, Ph.D. "Esta investigación muestra la notable capacidad de la IA para captar estas intrincadas relaciones espaciales entre las células dentro de los tejidos, extrayendo información sutil que antes estaba más allá de la comprensión humana al tiempo que predice los resultados de los pacientes".

Enlaces relacionados:
UT Southwestern Medical Center  

Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
TORCH Infections Test
TORCH Panel

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.