Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




IA predice con precisión resultados del cáncer a partir de muestras de tejido

Por el equipo editorial de LabMedica en español
Actualizado el 10 Jan 2024
Print article
Imagen: El modelo de IA analiza la organización espacial celular para hacer diagnósticos y pronósticos del paciente (Fotografía cortesía de UT Southwestern)
Imagen: El modelo de IA analiza la organización espacial celular para hacer diagnósticos y pronósticos del paciente (Fotografía cortesía de UT Southwestern)

Los patólogos suelen examinar las muestras de tejido de los pacientes en portaobjetos, un proceso integral para el diagnóstico. Este método tradicional, aunque eficaz, requiere mucho tiempo y está sujeto a variabilidad en las interpretaciones entre diferentes patólogos. Además, algunos detalles sutiles en las imágenes de patología podrían escapar a la observación humana, pero podrían contener información crítica sobre el estado de salud de un paciente. En los últimos años, se han desarrollado varios modelos de inteligencia artificial (IA) para realizar determinadas tareas usualmente realizadas por los patólogos, como clasificar tipos de células o medir las interacciones celulares en función de la proximidad. Sin embargo, estos modelos no han capturado completamente los aspectos más complejos del análisis de imágenes de tejidos que realizan los patólogos, incluido el reconocimiento de disposiciones espaciales celulares complejas y el filtrado de "ruidos" de imágenes irrelevantes que podrían distorsionar las interpretaciones. Para abordar esta brecha, los investigadores han introducido un modelo innovador de IA que es capaz de examinar la organización espacial de las células dentro de muestras de tejido, ofreciendo predicciones precisas sobre los resultados de los pacientes con cáncer y nuevas perspectivas para el pronóstico del cáncer asistido por IA y planes de tratamiento personalizados.

Esta herramienta de inteligencia artificial, denominada Ceograph, creada por investigadores del UT Southwestern Medical Center (Dallas, TX, EUA), imita el enfoque adoptado por los patólogos para examinar portaobjetos de tejido. Comienza identificando las células y sus respectivas posiciones dentro de la imagen. Luego clasifica los tipos de células y delinea sus formas y distribuciones espaciales, creando un mapa completo donde se detallan para su análisis la disposición, dispersión e interacciones entre las células. El equipo validó Ceograph en tres escenarios clínicos utilizando portaobjetos de patología. En un caso, Ceograph distinguió entre dos tipos de cáncer de pulmón: adenocarcinoma y carcinoma de células escamosas. En otro, midió el riesgo de progresión de afecciones orales potencialmente cancerosas a malignidad. Finalmente, identificó a los pacientes con cáncer de pulmón con mayor probabilidad de beneficiarse de los inhibidores del receptor del factor de crecimiento epidérmico.

En cada escenario, el desempeño de Ceograph en la predicción de los resultados de los pacientes superó a los métodos tradicionales. En particular, los conocimientos sobre la organización espacial celular proporcionados por Ceograph no solo son interpretables sino que también arrojan luz sobre las implicaciones biológicas de las distintas interacciones espaciales entre células individuales. Estos avances resaltan el papel cada vez más vital que puede desempeñar la IA en la atención médica, particularmente en la mejora de la precisión y eficiencia de los análisis patológicos. Esta tecnología promete perfeccionar las estrategias preventivas para personas con alto riesgo y adaptar las opciones de tratamiento para satisfacer las necesidades únicas de cada paciente.

"La organización espacial celular es como un complejo rompecabezas en el que cada célula sirve como una pieza única, que encaja meticulosamente para formar un tejido cohesionado o una estructura de órgano", dijo el líder del estudio, Guanghua Xiao, Ph.D. "Esta investigación muestra la notable capacidad de la IA para captar estas intrincadas relaciones espaciales entre las células dentro de los tejidos, extrayendo información sutil que antes estaba más allá de la comprensión humana al tiempo que predice los resultados de los pacientes".

Enlaces relacionados:
UT Southwestern Medical Center  

Miembro Oro
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
PSA Test
Human Semen Rapid Test

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.