Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Herramienta de IA para análisis automático de tejido del cáncer colorrectal supera métodos anteriores

Por el equipo editorial de LabMedica en español
Actualizado el 02 Nov 2023
Print article
Imagen: Una nueva herramienta de IA supera los métodos anteriores en el análisis del cáncer colorrectal (Fotografía cortesía de 123RF)
Imagen: Una nueva herramienta de IA supera los métodos anteriores en el análisis del cáncer colorrectal (Fotografía cortesía de 123RF)

El cáncer colorrectal (CCR) es el tercer cáncer más prevalente y el segundo más letal. Detectarlo a tiempo y tratarlo rápidamente es extremadamente importante. Si bien las tecnologías de visión artificial han experimentado mejoras notables en la clasificación automática de tipos de cáncer, dependen en gran medida de redes neuronales profundas con millones de parámetros ajustados para tareas de diagnóstico y pronóstico. Aunque el aprendizaje profundo ha demostrado capacidades extraordinarias, los profesionales de la salud aún tienen que inspeccionar muestras de tejido biopsiadas para verificar el diagnóstico y evaluar el estadio del tumor. Para avanzar aún más en este campo, los científicos han introducido una solución de inteligencia artificial (IA) diseñada específicamente para el análisis automatizado de tejido de cáncer colorrectal que supera a las técnicas anteriores.

La refinada red neuronal desarrollada por investigadores de la Universidad de Jyväskylä (Jyväskylä, Finlandia) ha establecido nuevos puntos de referencia de rendimiento en el análisis de tejidos del cáncer colorrectal. El sistema basado en inteligencia artificial ofrece una forma más precisa y rápida de clasificar muestras de tejido de cáncer colorrectal a partir de portaobjetos de microscopio. Este avance podría aliviar significativamente la carga de trabajo de los histopatólogos, permitiendo así pronósticos y diagnósticos más rápidos y precisos. A pesar de los resultados prometedores, es importante ser cautelosos al incorporar la IA a la práctica médica.

A medida que las tecnologías de IA se acercan a convertirse en una parte estándar de los procedimientos clínicos, se vuelve cada vez más vital que pasen por una validación clínica rigurosa. Esto es para garantizar que los resultados que producen estén consistentemente en línea con las normas clínicas establecidas. En un movimiento que fomenta el desarrollo colaborativo, los investigadores están poniendo a disposición del público esta red neuronal entrenada. Su objetivo es acelerar el progreso en este campo permitiendo a científicos, investigadores y desarrolladores de todo el mundo perfeccionar aún más la herramienta y explorar sus diversas aplicaciones potenciales.

"Al garantizar el acceso universal, el objetivo es acelerar los avances en la investigación del cáncer colorrectal", afirmó Fabi Prezja, responsable del diseño del método.

Enlaces relacionados:
Universidad de Jyväskylä

New
Miembro Oro
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.