Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Novedosa plataforma sinérgica detecta con precisión virus en las concentraciones más bajas

Por el equipo editorial de LabMedica en español
Actualizado el 31 Oct 2023
Print article
Imagen: La plataforma de biodetección basada en el aprendizaje profundo puede contar mejor las partículas virales (Fotografía cortesía de GIST)
Imagen: La plataforma de biodetección basada en el aprendizaje profundo puede contar mejor las partículas virales (Fotografía cortesía de GIST)

Los métodos rápidos e in situ para detectar y cuantificar virus son cruciales tanto para tratar a las personas infectadas como para controlar la propagación de la enfermedad. La crisis de la COVID-19 ha subrayado la necesidad de pruebas confiables pero de fácil acceso que eliminen los procedimientos complicados y largos asociados con los diagnósticos tradicionales de laboratorio. Las imágenes microscópicas de campo brillante son una tecnología de uso común en los puntos de atención para cuantificar las cargas virales. Sin embargo, el tamaño diminuto y el bajo índice de refracción de los virus y biopartículas similares pueden dificultar la detección precisa y aumentar la concentración más baja detectable de carga viral. Si bien los biosensores Gires-Tournois (GT), resonadores nanofotónicos, han mostrado ser prometedores en la detección de pequeñas partículas de virus, su utilización se ha visto limitada por problemas como los artefactos visuales y la no reproducibilidad.

En un avance reciente, un equipo internacional de investigadores, dirigido por el Instituto de Ciencia y Tecnología de Gwangju (GIST, Gwangju, Corea) recurrió a la inteligencia artificial (IA) para resolver este problema. Introdujeron una tecnología de biodetección combinada llamada "DeepGT". Esta tecnología combina las fortalezas de los biosensores GT con algoritmos de aprendizaje profundo para cuantificar con precisión biopartículas a nanoescala, como virus, sin la necesidad de una preparación compleja de muestras. Específicamente, el equipo planeó un biosensor GT con un diseño de película delgada de tres capas y lo trató para que pudiera detectar cambios de color al interactuar con materiales específicos. Para confirmar sus capacidades, simularon la interacción entre las células huésped y un virus utilizando partículas diseñadas para parecerse al virus SARS-CoV-2.

Además, el equipo entrenó una red neuronal convolucional (CNN) utilizando más de mil micrografías ópticas y electrónicas de barrido de la superficie del biosensor GT con diferentes tipos de nanopartículas. Sus hallazgos revelaron que DeepGT no solo fue capaz de refinar los artefactos visuales comunes a la microscopía de campo brillante, sino que también pudo obtener detalles esenciales incluso cuando la concentración viral era tan baja como 138 pg ml–1. Además, el sistema calculó el número de biopartículas con una precisión significativa, marcada por un error absoluto medio de sólo 2,37 en casi 1.600 imágenes, en comparación con una tasa de error de 13,47 para los métodos tradicionales basados en reglas, todo en un segundo. El sistema de biodetección mejorado por CNN también podría medir la gravedad de la infección, desde casos asintomáticos hasta casos graves, en función de la carga viral. Por lo tanto, DeepGT ofrece un método rápido y exacto para la detección de virus en una amplia gama de tamaños sin estar restringido por las limitaciones inherentes de la difracción de la luz visible.

"Diseñamos DeepGT para evaluar objetivamente la gravedad de una infección o enfermedad. Esto significa que ya no tendremos que depender únicamente de evaluaciones subjetivas para el diagnóstico y la atención médica, sino que tendremos un método más preciso y basado en datos para guiar las estrategias terapéuticas" dijo el profesor Young Min Song de GIST. "Nuestro método proporciona una solución práctica para la detección rápida y gestión de amenazas virales emergentes, así como la mejora de la preparación de la salud pública al reducir potencialmente la carga general de los costos asociados con el diagnóstico".

Enlaces relacionados:
GIST  

Miembro Oro
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.