Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Solución de aprendizaje automático ayuda a los patólogos a detectar lesiones cervicales precancerosas

Por el equipo editorial de LabMedica en español
Actualizado el 21 Jun 2023
Print article
Imagen: Una solución de aprendizaje automático ayuda a los patólogos a detectar displasia cervical (Fotografía cortesía de Freepik)
Imagen: Una solución de aprendizaje automático ayuda a los patólogos a detectar displasia cervical (Fotografía cortesía de Freepik)

El cáncer de cuello uterino se ubica como el cuarto cáncer más prevalente en las mujeres, con 604.000 nuevos casos informados en 2020, según la Organización Mundial de la Salud (OMS). Sin embargo, se destaca como uno de los cánceres más prevenibles y tratables, siempre que se detecte a tiempo y se maneje adecuadamente. Por lo tanto, la detección temprana de lesiones precancerosas es fundamental para la prevención de enfermedades. Ahora, los investigadores han desarrollado un método innovador que utiliza imágenes grandes de alta resolución para detectar lesiones precancerosas importantes.

Un equipo de investigadores de INESC TEC (Oporto, Portugal) e IMP Diagnostics (Oporto, Portugal) ha diseñado una solución de aprendizaje automático para ayudar a los patólogos a detectar la displasia cervical, haciendo que el proceso de diagnóstico de nuevas muestras sea completamente automático. Este es uno de los primeros trabajos publicados en utilizar portaobjetos completos. Los investigadores se propusieron desarrollar modelos de aprendizaje automático para respaldar la clasificación subjetiva de lesiones en el epitelio escamoso, la capa protectora del tejido contra los microorganismos, utilizando imágenes de portaobjetos completas (WSI) que contienen información de todo el tejido.

El equipo desarrolló una metodología poco supervisada: un método de aprendizaje automático que combina datos anotados y no anotados en la fase de entrenamiento del modelo para clasificar la displasia cervical. Esta técnica resulta particularmente beneficiosa considerando la dificultad de obtener anotaciones de datos patológicos: los grandes tamaños de imagen hacen que el proceso de anotación sea extremadamente laborioso, tedioso y muy subjetivo. Esta metodología permite a los investigadores establecer modelos con alto rendimiento, incluso cuando hay información faltante durante la fase de entrenamiento. El modelo resultante puede clasificar la displasia cervical, o el crecimiento anormal de células en la superficie, como lesiones escamosas intraepiteliales de grado bajo (LSIL) o alto (HSIL). Dada la complejidad y la naturaleza subjetiva del proceso de clasificación, estos modelos de aprendizaje automático pueden brindar una valiosa ayuda a los patólogos. Además, estos sistemas podrían actuar como un mecanismo de alerta temprana para casos sospechosos, alertando a los patólogos sobre casos que ameriten un examen más detallado.

“En la detección de displasia cervical, este fue uno de los primeros trabajos publicados que utiliza los portaobjetos completos, siguiendo un método que incluye la segmentación y posterior clasificación de las áreas de interés, haciendo completamente automático el diagnóstico de nuevas muestras”, explica Sara Oliveira, investigadora del INESC TEC.

Enlaces relacionados:
INESC TEC  
IMP Diagnostics

New
Miembro Oro
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Miembro Plata
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.