Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Modelo de aprendizaje profundo impulsado por IA cuenta con precisión tipos de células en imágenes de portaobjetos completos

Por el equipo editorial de LabMedica en español
Actualizado el 26 Apr 2023
Print article
Imagen: Un marco de aprendizaje profundo que estima los tipos de células en una imagen de patología digital de diapositivas completa (Fotografía cortesía de la Universidad de Finlandia Oriental)
Imagen: Un marco de aprendizaje profundo que estima los tipos de células en una imagen de patología digital de diapositivas completa (Fotografía cortesía de la Universidad de Finlandia Oriental)

Se necesitan métodos mejorados para contar tipos de células en imágenes de patología utilizando enfoques de aprendizaje profundo. Las técnicas actuales basadas en la segmentación y la regresión enfrentan desafíos como la necesidad de anotaciones precisas a nivel de píxel, dificultades para manejar núcleos superpuestos o regiones oscurecidas e información insuficiente sobre ubicaciones de tipos de células individuales. Además, los modelos probabilísticos tienden a producir predicciones inciertas y pueden dar lugar a predicciones con exceso de confianza. Los investigadores ahora han desarrollado un modelo avanzado de aprendizaje profundo para predecir y contar varios tipos de células en el microambiente tumoral, que se espera mejore la precisión y la eficiencia del diagnóstico del cáncer y la planificación del tratamiento.

La identificación de los diferentes tipos de células en el microambiente del tumor puede ofrecer información valiosa sobre la histología y la biología subyacente del tumor. El recuento de tipos de células preciso y fiable también es fundamental para la investigación y aplicaciones clínicas. Además, los recuentos de células se pueden utilizar para estudiar la distribución de diferentes tipos de células en el microambiente del tumor y su correlación con los resultados del paciente. En entornos clínicos, los recuentos de células pueden ayudar a monitorear la respuesta a la terapia y hacer seguimiento a la progresión de la enfermedad. Investigadores de la Universidad Finlandia Oriental (Kuopio, Finlandia) han propuesto un nuevo enfoque de aprendizaje profundo multitarea probatorio, llamado CT-EMT, para superar las limitaciones de los métodos actuales para el recuento de tipos de células en imágenes de tumores de portaobjetos completos. Este enfoque formula la estimación de densidad de tipo de célula y el conteo de tipo de célula como tareas de regresión, y la segmentación de núcleos como una tarea de clasificación a nivel de píxel.

El métoso de conteo y segmentación del tipo de célula propuesto ha superado a los modelos HoVer-Net y StarDist de última generación, con mejoras relativas del 21 % y el 12 % en términos de calidad panóptica media. El modelo desarrollado puede ofrecer interpretaciones persuasivas de diversos tipos de células y se puede aplicar a varias tareas de patología computacional, como la clasificación de tumores, el pronóstico y la planificación del tratamiento. Este trabajo allanará el camino para la creación de herramientas de patología digital más precisas y sólidas que puedan ayudar a los patólogos y médicos en el diagnóstico y tratamiento de pacientes con cáncer.

“El equipo de investigación de UEF Cancer AI tiene como objetivo explorar el potencial del uso de la tecnología de aprendizaje profundo en el análisis de datos de salud y cáncer”, dijo el investigador principal Hamid Behravan de la Universidad del Este de Finlandia. “Nuestro estudio implicará el desarrollo y la evaluación de algoritmos de aprendizaje profundo de vanguardia para analizar el cáncer y varios tipos de datos relacionados con la salud, incluidas imágenes médicas, datos genómicos y registros de salud electrónicos. Creemos que este enfoque tiene el potencial de mejorar significativamente la precisión y la eficiencia del diagnóstico y la planificación del tratamiento del cáncer de mama, así como de facilitar el descubrimiento de nuevos conocimientos y patrones en los datos sobre el cáncer. Esperamos que nuestra investigación contribuya al avance de la medicina de precisión y al desarrollo de enfoques más efectivos y personalizados para la prevención y el pronóstico del cáncer de mama”.

Enlaces relacionados:
Universidad de Finlandia Oriental

Miembro Oro
ENSAYOS TDM PARA ANTIPSICÓTICOS
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Miembro Plata
HPV Molecular Controls
ZeptoMetrix® HPV Type 16, 18, 45 & 68 Molecular Controls
New
Uric Acid and Blood Glucose Meter
URIT-10

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.