Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Modelo de IA analiza células en muestras de tejido sin necesidad de un patólogo capacitado

Por el equipo editorial de LabMedica en español
Actualizado el 11 Apr 2023
Print article
Imagen: La biopsia de tejido se procesa a través de un molino de tejido y luego se analiza utilizando citometría de deformabilidad en tiempo real (Fotografía cortesía de MPL)
Imagen: La biopsia de tejido se procesa a través de un molino de tejido y luego se analiza utilizando citometría de deformabilidad en tiempo real (Fotografía cortesía de MPL)

La información rápida y precisa sobre el tejido operado es crucial para guiar los siguientes pasos de un cirujano durante la cirugía del cáncer. En los casos en que los tumores sólidos están presentes en un paciente con cáncer, el cirujano generalmente envía una muestra de biopsia a un patólogo para una evaluación rápida. El patólogo debe determinar, entre otras cosas, si el tejido está sano, el grado de propagación del cáncer a los órganos, etc. El proceso de diagnóstico intraoperatorio tradicional es laborioso, requiere mucho tiempo y muchos recursos. Ahora, los científicos han desarrollado una nueva técnica que puede realizar un análisis confiable de tumores sólidos en tan solo 30 minutos, sin necesidad de un patólogo capacitado.

Un equipo de investigación del Instituto Max Planck para la Ciencia de la Luz (MPL, Erlangen, Alemania) ha creado una técnica novedosa que permite a los médicos analizar células en muestras de tejido de pacientes con cáncer de forma rápida y precisa, sin necesidad de la experiencia de un patólogo capacitado. El equipo utilizó inteligencia artificial (IA) para evaluar los datos generados por su método. Para su estudio, los investigadores utilizaron un molinillo de tejidos para separar rápidamente las muestras de biopsia hasta el nivel de una sola célula. Posteriormente, estas células individuales se analizaron mediante citometría de deformabilidad en tiempo real (RT-DC), un método sin etiquetas y capaz de examinar las propiedades físicas de hasta 1.000 células por segundo. Este método es 36.000 veces más rápido que los métodos convencionales utilizados para evaluar la deformabilidad celular.

La RT-DC implica empujar células individuales a alta velocidad a través de un canal microscópico, donde sufren deformación debido al estrés y la presión. Se capturan imágenes de cada célula, que luego los científicos utilizan para determinar una variedad de características físicas de las células, incluido su tamaño, forma y deformabilidad. Sin embargo, realizar únicamente de un análisis físico de las células es insuficiente para fines de diagnóstico. Los médicos deben ser capaces de interpretar estos resultados de forma independiente, sin necesidad de contar con la experiencia de un patólogo o médico capacitado.

Por lo tanto, para lograr esto, los investigadores combinaron el molinillo de tejidos y RT-DC con IA. El modelo de IA evalúa los extensos y complejos conjuntos de datos obtenidos a través del análisis RT-DC y evalúa rápidamente si una muestra de biopsia contiene tejido canceroso o no. Además, el uso de la IA confirmó la importancia de la deformabilidad celular como biomarcador, ya que los resultados fueron notablemente inferiores cuando la IA no se entrenó con esta variable.

En general, el procedimiento completo, que incluye el procesamiento de muestras y el análisis de datos automatizado, se puede ejecutar en menos de 30 minutos, lo que lo hace lo suficientemente rápido como para realizarlo durante la cirugía. Una ventaja significativa de este método es que no requiere la disponibilidad inmediata de un patólogo para analizar la muestra. Esto es particularmente ventajoso ya que las consultas intraoperatorias pueden no ser siempre factibles y, en algunos casos, las muestras solo pueden examinarse después de que se completa la cirugía. Según los resultados, es posible que los pacientes deban regresar al hospital para someterse a una cirugía adicional, a menudo días después. Además de detectar la presencia de tumores, esta técnica también se utilizó para detectar la inflamación de los tejidos en un modelo de enfermedad inflamatoria intestinal (EII). En el futuro, este método podría ayudar a los médicos a evaluar la gravedad de la enfermedad o distinguir entre varios tipos de EII. El equipo tiene como objetivo eventualmente hacer la transición de su método a un entorno clínico para respaldar o incluso suplantar el análisis patológico tradicional.

“Este fue un estudio de prueba de concepto: el método pudo determinar con precisión la presencia de tejido tumoral en nuestras muestras muy rápidamente”, dijo la Dra. Despina Soteriou, miembro del equipo de investigación. “El siguiente paso será continuar trabajando muy de cerca con los médicos para determinar cómo este método puede traducirse mejor a la clínica”.

Enlaces relacionados:
MPL  

New
Miembro Oro
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.