Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Se compara la microscopía automatizada para el diagnóstico rutinario de la malaria

Por el equipo editorial de LabMedica en español
Actualizado el 17 Oct 2018
Print article
Imagen: El Autoscope utiliza un software de aprendizaje profundo para cuantificar los parásitos de la malaria en una muestra (Fotografía cortesía de Intellectual Ventures).
Imagen: El Autoscope utiliza un software de aprendizaje profundo para cuantificar los parásitos de la malaria en una muestra (Fotografía cortesía de Intellectual Ventures).
El examen microscópico de los frotis de sangre coloreados con Giemsa sigue siendo una forma importante de diagnóstico en el manejo de casos de malaria. Sin embargo, al igual que con otros diagnósticos basados en visualización, la exactitud depende del desempeño del técnico individual, lo que dificulta la estandarización y la confiabilidad.

El reconocimiento automático de imágenes basado en el aprendizaje automático, utilizando redes neuronales convolucionales, ofrece un potencial para superar estos inconvenientes. La aplicación del reconocimiento de imágenes digitales a la microscopía de la malaria, utilizando algoritmos de inteligencia artificial para reemplazar o complementar el factor humano en la interpretación de los frotis de sangre, ha sido intentado, generalmente en frotis delgados.

Un equipo de científicos que colaboran con Intellectual Ventures (Bellevue, WA, EUA) realizó un ensayo observacional transversal en dos instituciones de salud primaria periféricas en Perú. Inscribieron a 700 participantes cuya edad variaba entre 5 y 75 años, y tenían antecedentes de fiebre en los últimos tres días o temperatura elevada al momento del ingreso. Se tomó una muestra de sangre mediante punción digital para hacer frotis de sangre para el diagnóstico de microscopía y se colocaron gotas adicionales de sangre en un papel de filtro para el análisis cuantitativo posterior usando la reacción en cadena de la polimerasa cuantitativa (qPCR). Un prototipo del microscopio digital que emplea un algoritmo basado en el aprendizaje automático, el Autoscope, fue evaluado por su potencial en la microscopía de la malaria.

Los investigadores informaron que en una clínica, la sensibilidad del Autoscope para diagnosticar la malaria fue del 72% y la especificidad fue del 85%. El desempeño de la microscopía fue similar al Autoscope, con una sensibilidad del 68% y una especificidad del 100%. En una clínica, el 85% de las láminas preparadas tenían un mínimo de imágenes de 600 glóbulos blancos (WBC), por lo que cumplían con las condiciones de diseño del Autoscope. En la segunda clínica, la sensibilidad del Autoscope fue del 52% y la especificidad del 70%. El desempeño de la microscopía en esta segunda clínica fue del 42% y la especificidad fue del 97%. Solo el 39% de las láminas de esta clínica cumplieron con los supuestos de diseño de Autoscope respecto a la preparación de las láminas para obtener imágenes de los WBC.

Los autores concluyeron que el desempeño diagnóstico del Autoscope estaba a la par de la microscopía de rutina cuando las láminas tenían un volumen de sangre adecuado para cumplir con los supuestos de diseño, como lo representan los resultados de una clínica. El desempeño diagnóstico del Autoscope fue inferior al de la microscopía de rutina en las láminas de la otra clínica debido a que generó láminas con volúmenes más bajos de sangre. El estudio fue publicado el 25 de septiembre de 2018 en la revista Malaria Journal.

Enlace relacionado:
Intellectual Ventures

Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: el estudio investigó las pruebas de dímero D en pacientes con mayor riesgo de embolia pulmonar (foto cortesía de Adobe Stock)

Prueba de dímero D puede identificar pacientes con mayor riesgo de embolia pulmonar

La embolia pulmonar (EP) es una afección que se sospecha con frecuencia en los servicios de urgencias (SU) y puede ser potencialmente mortal si no se diagnostica correctamente. Lograr un diagnóstico... Más

Inmunología

ver canal
Imagen: los hallazgos se basaron en pacientes del ensayo clínico de ADAURA de la terapia dirigida osimertinib para pacientes con CPCNP con mutaciones activadas por EGFR (foto cortesía del equipo multimedia de YSM)

Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer

En el continuo avance de la medicina personalizada, un nuevo estudio ha aportado evidencia que respalda el uso de una herramienta que detecta moléculas derivadas del cáncer en la sangre de... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.