Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Algoritmo de IA de autoaprendizaje utiliza imágenes patológicas para diagnosticar enfermedades raras

Por el equipo editorial de LabMedica en español
Actualizado el 13 Oct 2022

Las enfermedades raras suelen ser difíciles de diagnosticar y predecir el mejor curso de tratamiento puede ser un desafío para los médicos. Las bases de datos electrónicas modernas pueden almacenar una inmensa cantidad de registros digitales e imágenes de referencia, particularmente en patología a través de imágenes de diapositivas completas (WSI). Sin embargo, el tamaño en gigapíxeles de cada WSI individual y el número cada vez mayor de imágenes en grandes repositorios significa que la búsqueda y recuperación de WSI puede ser lenta y complicada. Como resultado, la escalabilidad sigue siendo un obstáculo importante para el uso eficiente. Para resolver este problema, los investigadores ahora han desarrollado un algoritmo de aprendizaje profundo que puede enseñarse a sí mismo a aprender características que luego se pueden usar para encontrar casos similares en grandes depósitos de imágenes de patología.

Conocida como SISH (siglas en inglés para búsqueda de imágenes autosupervisadas para histología), la nueva herramienta desarrollada por investigadores del Hospital Brigham and Women's (Boston, MA, EUA), actúa como un motor de búsqueda de imágenes patológicas y tiene muchas aplicaciones potenciales, incluida la identificación de enfermedades raras y ayudar a los médicos a determinar qué pacientes tienen probabilidades de responder a terapias similares. El algoritmo se enseña a sí mismo a aprender representaciones de características que se pueden usar para encontrar casos con características análogas en patología a una velocidad constante, independientemente del tamaño de la base de datos.

En su estudio, los investigadores probaron la velocidad y la capacidad de SISH para recuperar información de subtipo de enfermedad interpretable para cánceres comunes y raros. El algoritmo recuperó con éxito imágenes con velocidad y precisión de una base de datos de decenas de miles de imágenes de diapositivas completas de más de 22.000 casos de pacientes, con más de 50 tipos de enfermedades diferentes y más de una docena de sitios anatómicos. La velocidad de recuperación superó a otros métodos en muchos escenarios, incluida la recuperación de subtipos de enfermedades, particularmente cuando el tamaño de la base de datos de imágenes se amplió a miles de imágenes. Incluso mientras los depósitos se expandían en tamaño, SISH aún podía mantener una velocidad de búsqueda constante.

Sin embargo, el algoritmo de autoaprendizaje tiene algunas limitaciones, incluido un gran requerimiento de memoria, una conciencia limitada del contexto dentro de grandes diapositivas de tejido y el hecho de que está limitado a una sola modalidad de imagen. En general, el algoritmo demostró la capacidad de recuperar imágenes de manera eficiente independientemente del tamaño del repositorio y en diversos conjuntos de datos. También demostró capacidad en el diagnóstico de tipos de enfermedades raras y la capacidad de servir como motor de búsqueda para reconocer ciertas regiones de imágenes que pueden ser relevantes para el diagnóstico. Este trabajo puede informar en gran medida el diagnóstico, pronóstico y análisis de enfermedades futuras.

"Demostramos que nuestro sistema puede ayudar con el diagnóstico de enfermedades raras y encontrar casos con patrones morfológicos similares sin la necesidad de anotaciones manuales y grandes conjuntos de datos para el entrenamiento supervisado", dijo el autor principal Faisal Mahmood, PhD, en el Departamento de Patología de Brigham. “Este sistema tiene el potencial de mejorar la capacitación en patología, la subtipificación de enfermedades, la identificación de tumores y la identificación de morfologías raras”.

“A medida que el tamaño de las bases de datos de imágenes continúa creciendo, esperamos que SISH sea útil para facilitar la identificación de enfermedades”, agregó Mahmood. "Creemos que una dirección futura importante en esta área es la recuperación multimodal de casos, que implica el uso conjunto de datos de patología, radiología, genómica y registros médicos electrónicos para encontrar casos de pacientes similares".

Enlaces relacionados:
Hospital Brigham and Women's  

Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Diagnóstico Molecular

ver canal
Imagen: un grupo de proteínas involucradas en la señalización celular se puede usar como biomarcador sanguíneo para pacientes con esclerosis sistémica cutánea difusa (foto cortesía de Shutterstock)

Análisis de sangre podría identificar a pacientes con riesgo de esclerodermia grave

La esclerosis sistémica, también conocida como esclerodermia, causa el endurecimiento de la piel y el tejido conectivo. En muchos casos, la enfermedad también puede dañar órganos... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: ilustración esquemática del chip (foto cortesía de Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre

El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.