Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil





Algoritmo de inteligencia artificial predice el riesgo individual de mortalidad para los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 22 Feb 2021
Un algoritmo, desarrollado recientemente, entrenado con métodos de aprendizaje automático, usa la COVID-19 como ejemplo para predecir el riesgo de mortalidad individual de los pacientes.

Un equipo internacional, dirigido por investigadores del Instituto Max Planck de Sistemas Inteligentes (Tübingen, Alemania), desarrolló y entrenó el algoritmo para predecir el riesgo de mortalidad individual de los pacientes con COVID-19 basándose en los datos de miles de pacientes en todo el mundo. El algoritmo que tiene como objetivo ayudar a los profesionales médicos con predicciones de mortalidad para pacientes con COVID-19 también se puede entrenar para predecir el riesgo de mortalidad por otras enfermedades y, por lo tanto, apoyar a los médicos en los procesos de toma de decisiones.

El algoritmo, llamado Covews, que es la abreviatura de COVID-19 Early Warning System, (Sistema de Alerta Temprana para la COVID-19), se basa en datos médicos para predecir de manera confiable el riesgo de muerte de un paciente con hasta ocho días de anticipación con una sensibilidad de más del 95%. Esto significa que, en 95 de cada 100 casos, el algoritmo puede detectar si un paciente morirá a menos que se tomen medidas preventivas. Al mismo tiempo, Covews trabaja con una especificidad de poco menos del 70% para una predicción con ocho días de anticipación, lo que significa que, en aproximadamente 70 de cada 100 casos en los que predice la muerte, los pacientes finalmente mueren. En otras palabras, el algoritmo hace sonar una falsa alarma en solo 30 de cada 100 casos y es significativamente mejor para horizontes de tiempo más cortos. El algoritmo también se puede entrenar para hacer predicciones menos sensibles, pero más específicas.

Para desarrollar y especialmente para entrenar a Covews, los investigadores utilizaron 33.000 registros de datos anónimos de una cohorte llamada Optum, que rastrea a los pacientes en varios hospitales de EUA. Alimentaron el algoritmo con información sobre cómo varios parámetros de salud del paciente recopilados de forma rutinaria evolucionaron durante el curso de la enfermedad, y si la persona murió de COVID-19 o no. Como resultado, Covews aprendió a identificar patrones en los conjuntos de datos que indicaban un alto riesgo de mortalidad. Luego, el equipo internacional probó la exactitud con la que Covews determinó este riesgo en aproximadamente otros 14.000 conjuntos de datos de la cohorte Optum. Al probar Covews con datos de la red de salud global TriNetX, que incluye alrededor de 5.000 pacientes con pruebas COVID positivas en los EUA, Australia, India y Malasia, los investigadores demostraron que el algoritmo no solo predice el riesgo de mortalidad con un alto grado de certeza con conjuntos de datos de esta cohorte, sino también con datos de otros hospitales.

Aunque Covews hace predicciones fiables, es probable que pase bastante tiempo antes de que se utilice en la práctica. Esto se debe, en parte, a que en muchos hospitales los datos disponibles no están lo suficientemente estructurados, lo que hace que el desarrollo de un software adecuado basado en el algoritmo sea particularmente desafiante. En cualquier caso, al hacer que Covews esté disponible gratuitamente en Internet, los investigadores sientan las bases para poner el algoritmo en práctica rápidamente. No solo se podría usar para pacientes con COVID-19; con la formación adecuada, también podría predecir el riesgo de mortalidad por otras enfermedades.

“Por lo tanto, los médicos siempre deben decidir las medidas de tratamiento”, dijo Stefan Bauer del Instituto Max Planck de Sistemas Inteligentes, quien dirigió el equipo internacional de investigadores. “Sin embargo, nuestro algoritmo puede proporcionar información que la gente no puede derivar de los datos y que puede ayudar con la toma de decisiones médicas”.

Enlace relacionado:
Instituto Max Planck de Sistemas Inteligentes


Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Immunofluorescence Analyzer
MPQuanti
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.