Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil





Tecnología nueva de aprendizaje automático analiza las historias clínicas electrónicas para predecir la mortalidad en los pacientes de COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 20 Jan 2021
Los investigadores han utilizado una técnica de aprendizaje automático llamada “aprendizaje federado” para examinar las historias clínicas electrónicas y predecir mejor cómo progresarán los pacientes con COVID-19.

Los investigadores del Sistema de Salud de Monte Sinaí (Nueva York, NY, EUA) quienes crearon modelos utilizando el aprendizaje federado para mejorar las predicciones de los resultados de COVID-19, creen que la técnica emergente promete crear modelos de aprendizaje automático más sólidos que se extienden más allá de un solo sistema de salud sin comprometer la privacidad de los pacientes. Más...
Estos modelos, a su vez, pueden ayudar a clasificar a los pacientes y mejorar la calidad de su atención.

El aprendizaje federado es una técnica que entrena un algoritmo en varios dispositivos o servidores que contienen muestras de datos locales, pero evita la agregación de datos clínicos, lo cual no es deseable por razones que incluyen problemas de privacidad de los pacientes. Los investigadores de Monte Sinaí implementaron y evaluaron modelos de aprendizaje federados utilizando datos de historias clínicas electrónicas de cinco hospitales separados dentro del Sistema de Salud para predecir la mortalidad en pacientes con COVID-19. Compararon el desempeño de un modelo federado con los construidos con datos de cada hospital por separado, conocidos como modelos locales. Después de entrenar sus modelos en una red federada y probar los datos de los modelos locales en cada hospital, los investigadores encontraron que los modelos federados demostraron un mayor poder predictivo y superaron a los modelos locales en la mayoría de los hospitales.

“Los modelos de aprendizaje automático en el cuidado de la salud a menudo requieren datos diversos y a gran escala para ser robustos y traducibles por fuera de la población de pacientes de la que fueron entrenados”, dijo el autor correspondiente del estudio, Benjamin Glicksberg, PhD, profesor asistente de genética y ciencias genómicas en la Facultad de Medicina Icahn en Monte Sinaí, y miembro del Instituto Hasso Plattner para la Salud Digital en Monte Sinaí y el Centro de Inteligencia Clínica Monte Sinaí. “El aprendizaje federado ha ganado terreno dentro del espacio biomédico como una forma para que los modelos aprendan de muchas fuentes sin exponer ningún dato sensible del paciente. En nuestro trabajo, demostramos que esta estrategia puede ser particularmente útil en situaciones como la COVID-19”.

“El aprendizaje automático en el cuidado de la salud sufre de una crisis de reproducibilidad”, dijo el primer autor del estudio, Akhil Vaid, MD, becario postdoctoral en el Departamento de Genética y Ciencias Genómicas de la Facultad de Medicina Icahn en Monte Sinaí, y miembro del Instituto Hasso Plattner para Salud Digital en Monte Sinaí y el Centro de Inteligencia Clínica Monte Sinaí. “Esperamos que este trabajo muestre los beneficios y las limitaciones del uso del aprendizaje federado con historias clínicas electrónicas para una enfermedad que tiene una escasez relativa de datos en un hospital individual. Los modelos construidos con este enfoque federado superan a los construidos por separado de tamaños de muestra limitados de hospitales aislados. Será emocionante ver los resultados de iniciativas más grandes de este tipo”.

Enlace relacionado:
Sistema de Salud de Monte Sinaí


Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Calprotectin Assay
Fecal Calprotectin ELISA
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Diagnóstico Molecular

ver canal
Imagen: macrófagos infectados con Mycobacterium tuberculosis (foto cortesía del MIT)

Nueva etiqueta molecular desarrolla pruebas de tuberculosis más sencillas y rápidas

La tuberculosis (TB), la enfermedad infecciosa más mortal a nivel mundial, infecta a aproximadamente 10 millones de personas cada año y causa más de un millón de muertes al año.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.