Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Los investigadores sientan la base para la producción de dispositivos diagnósticos basados en grafeno

Por el equipo editorial de LabMedica en español
Actualizado el 26 Mar 2019
Print article
Imagen: Los investigadores combinaron el grafeno con cintas metálicas de oro de tamaño nanométrico para crear un biosensor ultrasensible que podría ayudar a detectar una variedad de enfermedades en humanos y animales (Fotografía cortesía del Grupo Oh, Universidad de Minnesota).
Imagen: Los investigadores combinaron el grafeno con cintas metálicas de oro de tamaño nanométrico para crear un biosensor ultrasensible que podría ayudar a detectar una variedad de enfermedades en humanos y animales (Fotografía cortesía del Grupo Oh, Universidad de Minnesota).
Un avance en el uso del grafeno como un resonador de plasmones para la espectroscopia infrarroja ultrasensible debería permitir el desarrollo de nuevos biosensores para la detección de enfermedades a nivel molecular.

El grafeno es una forma de carbono que consiste en una sola capa de átomos de carbono dispuestos en una red hexagonal. Es un semimetal con una pequeña superposición entre la valencia y las bandas de conducción. Como tal, se puede considerar como una molécula aromática indefinidamente grande, el máximo caso de la familia de los hidrocarburos aromáticos policíclicos planos. El grafeno es el elemento estructural básico de muchas otras formas de carbono, como el grafito, el carbón, los nanotubos de carbono y los fullerenos. El grafeno tiene muchas propiedades poco comunes, como ser el material más resistente jamás probado, al mismo tiempo que conduce el calor y la electricidad de manera eficiente y casi transparente.

El notable grosor de un solo átomo del grafeno minimiza su eficiencia para interactuar con la luz que se filtra a través de ella. Dado que la absorción de luz y la conversión a campos eléctricos locales es esencial para detectar pequeñas cantidades de moléculas, su estructura ha evitado el uso significativo de grafeno como base para los dispositivos de diagnóstico.

Investigadores de la Universidad de Minnesota (Minneapolis/St. Paul, EUA) combinaron el grafeno con cintas metálicas de oro de tamaño nanométrico. Usando cinta adhesiva y una técnica de nanofabricación de alta tecnología llamada “decapado de plantilla”, crearon una superficie de capa base ultra plana para el grafeno que hizo que el material fuera adecuado para su uso como resonador de plasmones acústicos.

La resonancia de plasmones es un fenómeno que ocurre cuando la luz se refleja en las películas metálicas delgadas, una propiedad que se puede usar para medir la interacción de las biomoléculas en la superficie. Una onda de densidad de carga de electrones surge en la superficie de la película cuando la luz se refleja en la película en condiciones específicas. Una fracción de la energía luminosa que incide en un ángulo definido puede interactuar con los electrones deslocalizados en la película de metal (plasmón), reduciendo la intensidad de la luz reflejada. El ángulo de incidencia en el que ocurre esto está influenciado por el índice de refracción cerca de la parte posterior de la película de metal, a la que se inmovilizan las moléculas diana. Si los ligandos en una fase móvil, que corre a lo largo de una célula de flujo, se unen a las moléculas de la superficie, el índice de refracción local cambia en proporción a la masa que se inmoviliza. Esto se puede monitorizar en tiempo real detectando cambios en la intensidad de la luz reflejada.

Los investigadores informaron que los plasmones acústicos basados en grafeno permitieron mediciones ultrasensibles de bandas de absorción y modos de fonones de superficie en capas de proteína de espesor de ångströms y de SiO2, respectivamente. La plataforma acústica del resonador de plasmones era escalable y podía aprovechar el máximo nivel de interacciones entre luz y materia con una eficiencia de casi el 94% para aplicaciones potenciales, como espectroscopia, detección, metasuperficies y optoelectrónica. Cuando se insertaron moléculas de proteína entre el grafeno y las cintas metálicas, se captó la suficiente energía como para ver las capas individuales de las moléculas de proteínas.

“Para detectar y tratar muchas enfermedades, necesitamos detectar moléculas de proteínas en cantidades muy pequeñas y comprender su estructura”, dijo el autor principal, el Dr. Sang-Hyun Oh, profesor de ingeniería eléctrica e informática en la Universidad de Minnesota. “Actualmente, hay muchos desafíos técnicos con ese proceso. Esperamos que nuestro dispositivo con grafeno y un proceso de fabricación único proporcionen la investigación fundamental que pueda ayudar a superar esos desafíos. Nuestras simulaciones por computadora mostraron que este novedoso enfoque funcionaría, pero aún estábamos un poco sorprendidos cuando alcanzamos el 94% de absorción de luz en los dispositivos reales. Convertir un ideal desde una simulación por computadora tiene muchos desafíos. Todo tiene que ser de tan alta calidad y atómicamente plano. El hecho de que pudiéramos obtener una concordancia tan buena entre la teoría y el experimento fue bastante sorprendente y emocionante”.

Este trabajo fue detallado en la edición digital del 11 de febrero de 2019 de la revista Nature Nanotechnology.

Enlace relacionado:
Universidad de Minnesota

New
Miembro Oro
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Miembro Plata
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Rocking Shaker
HumaRock

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.