Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Análisis de células inmunes mediante IA predice pronóstico del cáncer de mama

Por el equipo editorial de LabMedica en español
Actualizado el 20 Nov 2024
Print article
Imagen: Los hallazgos del estudio sugieren que los linfocitos infiltrantes de tumores son un biomarcador robusto de cáncer de mama (Foto cortesía de Shutterstock)
Imagen: Los hallazgos del estudio sugieren que los linfocitos infiltrantes de tumores son un biomarcador robusto de cáncer de mama (Foto cortesía de Shutterstock)

Los linfocitos infiltrantes de tumores (TIL) son células inmunitarias cruciales para combatir el cáncer. Su presencia en un tumor indica que el sistema inmunitario está intentando atacar y eliminar las células cancerosas. Los TIL pueden ser indicadores importantes para predecir cómo responderán las pacientes con cáncer de mama triple negativo al tratamiento y cómo podría progresar la enfermedad. Sin embargo, la evaluación de estas células inmunitarias puede arrojar resultados inconsistentes. La inteligencia artificial (IA) tiene el potencial de estandarizar y automatizar este proceso, pero demostrar su eficacia para el uso en la atención médica ha sido un desafío. Ahora, los investigadores han explorado cómo diferentes modelos de IA pueden predecir el pronóstico del cáncer de mama triple negativo analizando células inmunitarias específicas dentro del tumor. Este estudio, publicado en eClinicalMedicine, representa un paso significativo hacia la incorporación de la IA en la atención oncológica para mejorar los resultados de los pacientes.

Investigadores del Instituto Karolinska (Estocolmo, Suecia) probaron diez modelos de IA diferentes para evaluar su capacidad de analizar los linfocitos infiltrantes de tumores en muestras de tejido de pacientes con cáncer de mama triple negativo. Los resultados revelaron que el rendimiento de los modelos de IA variaba, pero ocho de los diez modelos demostraron una fuerte capacidad de pronóstico, lo que significa que podían predecir los resultados de salud de los pacientes con una precisión similar. Incluso los modelos entrenados en conjuntos de datos más pequeños mostraron resultados prometedores, lo que sugiere que los linfocitos infiltrantes de tumores son un biomarcador confiable. El estudio destaca la necesidad de grandes conjuntos de datos para comparar diferentes modelos de IA y validar su eficacia antes de que puedan usarse en la práctica clínica. Aunque los hallazgos son prometedores, se requiere una mayor validación.

“Nuestra investigación destaca la importancia de los estudios independientes que imitan la práctica clínica real”, afirmó Balazs Acs, investigador del Departamento de Oncología y Patología del Instituto Karolinska. “Solo a través de este tipo de pruebas podemos garantizar que las herramientas de IA sean fiables y eficaces para el uso clínico”.

Miembro Oro
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Hematology Analyzer
BH-6180
New
Syphilis Infection Test
IMPACT RPR

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: el ensayo de vanguardia se procesa los instrumentos iSYSTM o i10 TM de acceso aleatorio (Foto cortesía de EUROIMMUN)

Prueba automatizada de testosterona libre mejora capacidades de diagnóstico de trastornos androgénicos

Un ensayo de última generación ofrece una medición directa de los niveles de testosterona libre en una sola prueba, mejorando significativamente las capacidades de diagnóstico para afecciones como hipogonadismo,... Más

Microbiología

ver canal
Imagen: el sistema innovador ofrece una forma más rápida de diagnosticar infecciones transmitidas por la sangre (foto cortesía de Melio)

Plataforma sin cultivo identifica rápidamente infecciones del torrente sanguíneo

La sepsis neonatal es una enfermedad potencialmente mortal que se produce por infecciones del torrente sanguíneo en recién nacidos menores de 28 días. Debido a que su sistema inmunitario... Más

Tecnología

ver canal
Imagen: métodos de muestreo de proteínas de película de lágrimas humanas (Foto cortesía de Clinical Proteomics. 2024, 13 de marzo; 21: 23. doi: 10.1186/s12014-024-09475-8)

Nuevo método analiza lágrimas para detectar enfermedades de forma temprana

Los fluidos corporales, incluidas las lágrimas y la saliva, transportan proteínas que se liberan desde diferentes partes del cuerpo. La presencia de proteínas específicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.