Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Modelo de IA detecta el cáncer a una velocidad relámpago mediante análisis de azúcar

Por el equipo editorial de LabMedica en español
Actualizado el 15 Jul 2024
Print article
Imagen: El espectrómetro de masas puede detectar diferentes estructuras de las moléculas de azúcar, llamadas glicanos, en las células (foto cortesía de Lundbergs Forskningsstiftelse/Magnus Gotander)
Imagen: El espectrómetro de masas puede detectar diferentes estructuras de las moléculas de azúcar, llamadas glicanos, en las células (foto cortesía de Lundbergs Forskningsstiftelse/Magnus Gotander)

Los glicanos, que son estructuras compuestas por moléculas de azúcar dentro de las células, pueden ser analizados utilizando espectrometría de masas. Esta técnica es particularmente útil porque estas estructuras de azúcar pueden revelar la presencia de varios tipos de cáncer dentro de las células. Sin embargo, interpretar los datos de la espectrometría de masas, específicamente los patrones de fragmentación de los glicanos, requiere un análisis humano meticuloso. Este escrutinio detallado puede llevar desde varias horas hasta días por muestra y solo es realizado de manera fiable por un puñado de expertos altamente capacitados a nivel mundial, ya que implica un trabajo de detección complejo y aprendido a lo largo de muchos años. Esta necesidad de un análisis experto crea un cuello de botella importante en la utilización del análisis de glucanos para aplicaciones como la detección del cáncer, especialmente cuando es necesario examinar numerosas muestras. Ahora, los investigadores han introducido un modelo de inteligencia artificial (IA) que mejora la capacidad de detectar el cáncer mediante el análisis de moléculas de azúcar, demostrando ser más rápido y efectivo que los enfoques tradicionales semi-manuales.

El modelo de IA, llamado Candycrunch, fue entrenado por investigadores de la Universidad de Gotemburgo (Gotemburgo, Suecia) utilizando una vasta base de datos que contiene más de 500,000 ejemplos de diversas fragmentaciones y estructuras asociadas de moléculas de azúcar. Este extenso entrenamiento ha capacitado a Candycrunch para determinar con precisión la estructura exacta de los azúcares en una muestra en el 90 % de los casos, con el objetivo de igualar pronto los niveles de precisión observados en la secuenciación de otras secuencias biológicas como el ADN, el ARN y las proteínas. El modelo de IA descrito en un artículo científico publicado en Nature Methods automatiza el análisis de glicanos y lo completa en tan solo unos segundos. Además, Candycrunch puede identificar estructuras de azúcar que los analistas humanos suelen pasar por alto debido a sus bajas concentraciones. Debido a su rapidez y precisión, Candycrunch acelera significativamente la identificación de biomarcadores basados en glicanos, que son cruciales para diagnosticar y predecir el cáncer. Por lo tanto, el modelo tiene el potencial de ayudar a los investigadores a descubrir nuevos biomarcadores basados en glicanos para el cáncer.

"Creemos que los análisis de glucanos se convertirán en una parte más importante de la investigación biológica y clínica ahora que hemos automatizado el mayor cuello de botella", afirmó Daniel Bojar, profesor asociado de bioinformática en la Universidad de Gotemburgo.

Enlaces relacionados:
Universidad de Gotemburgo

Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Miembro Oro
ANALIZADOR DE GASES EN SANGRE
GEM Premier 7000 with iQM3
New
C. difficile Positive Control
C. difficile Ag Positive Control for Rapid Test
New
hCG Urine Test
QuickVue hCG Urine Test

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: El panel Sinovasure RISC utiliza una sola muestra de fluido sinovial para evaluar biomarcadores asociados con tipos de artritis comunes (Foto cortesía de CD Diagnostics)

Nueva prueba para diagnóstico precoz de osteoartritis mejora toma de decisiones clínicas

A medida que la población envejece, la prevalencia de la osteoartritis (OA) continúa aumentando. Por lo general, la osteoartritis se diagnostica en sus últimas etapas, cuando la d... Más

Hematología

ver canal
Imagen: el recuento sanguíneo personalizado podría conducir a una intervención temprana para enfermedades comunes (Foto cortesía de 123RF)

Pruebas de hemograma completo personalizadas ayudarían a diagnosticar enfermedades en etapa temprana

El hemograma completo es un examen estándar que la mayoría de los médicos solicitan para los adultos sanos. Esta prueba es esencial para evaluar la salud general de un paciente con una sola muestra de sangre.... Más

Inmunología

ver canal
Imagen: Concepto para el dispositivo. Las células B de memoria capaces de unir el virus de la influenza permanecen atascadas en los canales a pesar de las fuerzas de corte (Foto cortesía de Steven George/UC Davis)

Dispositivo basado en chip microfluídico mide inmunidad viral

Cada invierno surge una nueva variante de la gripe que supone un reto para el sistema inmunitario. Las personas que ya han sido infectadas o vacunadas contra la gripe pueden tener cierto nivel de protección,... Más

Microbiología

ver canal
Imagen: El panel de fiebre tropical BIOFIRE® FILMARRAY®  ha recibido la autorización especial 510 (k) de la FDA de EUA (Foto cortesía de bioMérieux)

Prueba PCR sindrómica identifica patógenos de forma rápida y precisa en pacientes con infecciones por fiebre tropical

Las fiebres tropicales son infecciones que son comunes o exclusivas de las regiones tropicales y subtropicales. A medida que estas enfermedades se propagan a áreas que antes no estaban afectadas... Más

Patología

ver canal
Imagen: El modelo de IA inmunohistoquímica universal (UIHC) Lunit SCOPE uIHC (Foto cortesía de Lunit)

Modelo de IA destaca en análisis de de cánceres y datos de IHC no vistos

La inmunohistoquímica (IHC) desempeña un papel crucial en la oncología, ya que permite a los patólogos detectar y cuantificar la expresión de proteínas, lo que informa las decisiones sobre la terapia sistémica.... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.