Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ZeptoMetrix an Antylia scientific company

Deascargar La Aplicación Móvil




Sistema de PCR inteligente con IA revolucionará diagnóstico clínico

Por el equipo editorial de LabMedica en español
Actualizado el 24 Oct 2024
Print article
Imagen: La investigadora Caitlin McDonald, quien dirigió el estudio, presentó la investigación de PCR en la Conferencia de la Sociedad Internacional de Genética Forense (Foto cortesía de la Universidad de Flinders)
Imagen: La investigadora Caitlin McDonald, quien dirigió el estudio, presentó la investigación de PCR en la Conferencia de la Sociedad Internacional de Genética Forense (Foto cortesía de la Universidad de Flinders)

La reacción en cadena de la polimerasa (PCR) es una técnica de laboratorio ampliamente utilizada para amplificar o copiar pequeños segmentos de material genético, aplicable en áreas como la identificación de huellas dactilares de ADN, el diagnóstico de trastornos genéticos y la detección de patógenos como el COVID-19. Desde el diagnóstico médico hasta las pruebas forenses y la seguridad nacional, la elaboración de perfiles de ADN mediante PCR ha transformado el muestreo de alto rendimiento en el siglo XXI, aunque poco ha cambiado desde su inicio en la década de 1980. La amplificación de ADN tradicional requiere que se establezcan todos los parámetros antes de que comience el proceso, pasando por alto las variaciones que pueden existir entre las muestras y las condiciones. Incluso pequeñas mejoras en el rendimiento de la PCR podrían afectar significativamente a los cientos de miles de muestras de ADN que se amplifican cada año, especialmente cuando se trata de muestras degradadas. Los investigadores ahora han logrado avances en pruebas de ADN críticas al incorporar el aprendizaje automático en la elaboración de perfiles de ADN.

La nueva investigación realizada por expertos de la Universidad Flinders (Bedford Park, SA, Australia) reveló mejoras sustanciales tanto en la calidad del perfil de ADN como en la eficiencia de las condiciones de ciclado de PCR mediante la aplicación de técnicas de inteligencia artificial (IA). En su estudio, los investigadores emplearon el aprendizaje automático para desarrollar nuevos sistemas de "PCR inteligente", centrándose en modificaciones potenciales a gran escala y condiciones de ciclado más rápidas para obtener resultados más rápidos y precisos. Sus hallazgos, publicados en un artículo en Genes, demostraron cómo configurar un sistema que permite que un proceso de PCR proporcione retroalimentación en tiempo real, lo que permite que un algoritmo de aprendizaje automático realice ajustes instantáneos a las condiciones de PCR.

Al aprovechar los avances en el aprendizaje automático y la tecnología de sensores, los investigadores han transformado el proceso de PCR de un enfoque único a una experiencia personalizada y optimizada, logrando una mayor calidad y mayores cantidades de ADN en menos tiempo de lo que era posible anteriormente. Según los investigadores, si se aprovechan de manera eficaz, la IA y el aprendizaje automático podrían mejorar significativamente la sensibilidad de las pruebas de PCR. Con una investigación continua, estas metodologías de IA-ML prometen mejorar la calidad de las muestras de ADN traza.

“Nuestro sistema tiene el potencial de superar los desafíos que han obstaculizado a los científicos forenses durante décadas, especialmente con muestras traza, inhibidas y degradadas”, dijo Caitlin McDonald, candidata a doctora de la Facultad de Ciencias e Ingeniería, quien dirigió el estudio. “Al optimizar de manera inteligente la PCR para una amplia variedad de tipos de muestras, puede mejorar drásticamente el éxito de la amplificación y brindar resultados más confiables incluso en los casos más complejos”.

Miembro Oro
ENSAYOS TDM PARA ANTIPSICÓTICOS
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA

Print article

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.