Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Avance significativo en microscopía electrónica

Por el equipo editorial de LabMedica en español
Actualizado el 06 Dec 2009
Print article
Imagen: Microfotografía electrónica de transmisión (TEM) a color de un corte a través de una reunión de células acinares secretoras de enzimas de un páncreas (Fotografía cortesía de MedImage).
Imagen: Microfotografía electrónica de transmisión (TEM) a color de un corte a través de una reunión de células acinares secretoras de enzimas de un páncreas (Fotografía cortesía de MedImage).
Los ingenieros eléctricos han propuesto una nueva estrategia que puede resolver una limitación crítica de los microscopios electrónicos de alta resolución: no se pueden usar para observar células vivas porque los electrones destruyen las muestras. Los ingenieros sugieren usar una técnica de medición de mecánica cuántica que permite que los electrones detecten los objetos remotamente sin tener que golpear los objetos observados, evitando así el daño.

Un microscopio electrónico, no invasivo, podría suministrar claves sobre preguntas esenciales de la vida y la materia, permitiendo que los investigadores observen moléculas dentro de una célula viva sin afectarlas. Si tienen éxito, estos microscopios resolverían lo que el premio Nobel, Dennis Gabor concluyó en 1956, y llamó la limitación fundamental de la microscopía electrónica: "La destrucción del objeto con el agente de exploración”.

Los microscopios electrónicos convencionales usan un rayo de partículas de electrones en lugar de luz, para observar muestras. Estos rayos ofrecen una resolución extremadamente alta; hasta 0,2 nm - 10 nm, o 10 a 1.000 veces mayor que el microscopio tradicional de luz. Por el contrario, con la mecánica cuántica propuesta, los electrones no golpearían directamente el objeto que se observa. En su lugar, un electrón fluiría alrededor de uno de dos anillos, colocados uno encima del otro. Los anillos estarían lo suficientemente cerca por lo que el electrón podría saltar fácilmente entre ellos. Sin embargo, si se colocara un objeto (como una célula) entre los anillos, el electrón no podría saltar y quedaría atrapado en un anillo.

Esta instalación estudiaría un pixel de la muestra, cada vez, colocándolos juntos para crear la imagen completa. Cada vez que se atrapa el electrón, el sistema sabría que hay un pixel oscuro en ese sitio.

El profesor asistente Dr. Mehmet Fatih Yanik, del Instituto Tecnológico de Massachusetts (MIT; Cambridge, MA, EUA), y autor principal del artículo, publicado en la edición de Octubre 2009, de la revista Physical Review, reportó que espera que el proyecto "posiblemente encienda los esfuerzos experimentales alrededor del mundo para su realización, y talvez el primer prototipo aparezca en alrededor de cinco años”.

Aunque se deben resolver retos técnicos (tal como prevenir que los electrones cargados interactúen con otros metales en el microscopio), el Dr. Yanik cree que eventualmente un microscopio como ese podría resolver una resolución de un solo nanómetro. Este nivel de resolución permitiría que los científicos vean moléculas como las enzimas y ácidos nucleicos dentro de las células vivas.

Enlaces relacionado:
Massachusetts Institute of Technology


New
Miembro Oro
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Miembro Oro
Hepatitis C Virus Test
HCV - I521

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.