Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... más Productos destacados: More products

Deascargar La Aplicación Móvil




Mejoran el diagnóstico automatizado de malaria mediante redes neuronales profundas

Por el equipo editorial de LabMedica en español
Actualizado el 10 Aug 2020
Print article
Imagen: Trofozoítos en forma de anillo de Plasmodium falciparum y un glóbulo blanco en un extendido de gota gruesa (Fotografía cortesía de Medical Care Development International).
Imagen: Trofozoítos en forma de anillo de Plasmodium falciparum y un glóbulo blanco en un extendido de gota gruesa (Fotografía cortesía de Medical Care Development International).
La malaria por Plasmodium falciparum se mantiene como una de las mayores cargas sanitarias mundiales con más de 228 millones de casos en todo el mundo en 2018. En ese año hubo aproximadamente 405.000 muertes por malaria en todo el mundo, y la región africana representó el 93% de estas muertes, principalmente entre niños.

Aunque hay una variedad de técnicas que se han desarrollado para el diagnóstico del paludismo, la microscopía óptica convencional en un frotis de sangre de gota gruesa y un extendido delgado coloreado con Giemsa sigue siendo el estándar de oro. Técnicas como la reacción en cadena de la polimerasa, el ensayo de citometría de flujo y los métodos basados en colorantes de fluorescencia carecen de una metodología estandarizada universalmente, presentan costos elevados y requieren una mejora en el control de calidad.

Un equipo de científicos del Colegio Universitario de Londres (Londres, Reino Unido) aprovechó las etiquetas de microscopía clínica de rutina de sus clínicas de malaria con control de calidad, para capacitar a un clasificador de malaria de red neuronal convolucional profunda (DeepMCNN), para el diagnóstico automatizado de la malaria. El sistema DeepMCNN también proporciona recuentos totales de parásitos de la malaria (PM) y glóbulos blancos (WBC) que permiten un cálculo de la parasitemia en PM/μL. Los parásitos de la malaria se detectaron y contaron mediante microscopía operada por expertos humanos después de la coloración de Giemsa de frotis de sangre gruesos y delgados. El criterio para declarar a un participante libre de parásitos de la malaria fue que no hubiera parásitos detectables en 100 campos de gran aumento (100 ×) en frotis gruesos.

Los investigadores capturaron imágenes con un microscopio BX63 de campo brillante vertical (Olympus, Tokio, Japón), equipado con una lente objetivo 100 ×/1,4 NA, una plataforma de posicionamiento de muestras x-y motorizada (Prior Scientific, Cambridge, Reino Unido) y una cámara a color para capturar imágenes de muestras de gota gruesa coloreadas con Giemsa. Estos frotis preparados en sus clínicas ensayaron el uso de métodos de detección de objetos basados en el aprendizaje profundo para identificar tanto los parásitos de P. falciparum como los núcleos de glóbulos blancos (GB) en las imágenes de extensiones de sangre de gota gruesa con profundidad de campo extendida (EDoF).

El equipo informó que la validación prospectiva de DeepMCNN logró una sensibilidad/especificidad de 0,92/0,90 frente al diagnóstico de malaria a nivel de expertos. El desempeño de VPP/VPN fue de 0,92/0,90, que es clínicamente utilizable en sus entornos holoendémicos en una metrópoli densamente poblada.

Los autores concluyeron que sus datos abiertos y en DeepMCNN, fácilmente implementable, proporcionan una plataforma clínicamente relevante, donde otros proveedores de atención médica podrían aprovechar sus etiquetas de diagnóstico de nivel de paciente, fácilmente disponibles, para adaptar y mejorar aún más la exactitud del clasificador DeepMCNN para su configuración de ruta clínica. El estudio fue publicado en la edición de agosto de 2020 de la revista American Journal of Hematology.

Enlace relacionado:
Colegio Universitario de Londres
Prior Scientific

New
Miembro Oro
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Miembro Plata
Benchtop Image Acquisition Device
Microwell Imager

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.