Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Nueva tecnología de IA supera métodos tradicionales en segmentación de imágenes biomédicas

Por el equipo editorial de LabMedica en español
Actualizado el 29 Nov 2024
Print article
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)

La ómica espacial es un campo emergente que integra técnicas de perfilado molecular como la genómica, la transcriptómica y la proteómica con información espacial, lo que permite a los investigadores determinar la ubicación de varias moléculas dentro de las células en tejidos complejos. Este enfoque ofrece información valiosa sobre los mecanismos celulares detrás del desarrollo y la progresión de la enfermedad, lo que es crucial para mejorar los diagnósticos y avanzar en terapias dirigidas, un enfoque central en la investigación traslacional. La ómica espacial permite el estudio de enfermedades como el cáncer y la enfermedad renal crónica al revelar cómo las interacciones celulares y los microambientes influyen en la progresión de la enfermedad y las respuestas terapéuticas. El primer paso para analizar los datos de la ómica espacial implica tareas como la segmentación celular, que define los límites celulares, y la clasificación, que asigna los tipos de células. Los avances recientes en las tecnologías de la ómica espacial permiten el examen de tejidos intactos a nivel celular, lo que proporciona información incomparable sobre la relación entre la arquitectura celular y la función de diferentes tejidos y órganos.

Con el aumento del volumen de datos ómicos espaciales, existe una creciente demanda de herramientas computacionales avanzadas para el análisis. En respuesta, los investigadores del Hospital Infantil de Filadelfia (CHOP, Filadelfia, PA, EUA) han desarrollado una tecnología de inteligencia artificial (IA) llamada CelloType, un modelo integral diseñado para mejorar la precisión de la identificación y clasificación de células en imágenes de tejidos de alto contenido. CHOP participa en proyectos destacados como la Red del Atlas de Tumores Humanos, el Programa del Atlas BioMolecular Humano (HuBMAP) y la iniciativa BRAIN, que utilizan tecnologías similares para mapear la organización espacial de tejidos sanos y enfermos. El modelo CelloType utiliza aprendizaje profundo basado en transformadores, un tipo de IA que automatiza el análisis de datos complejos y de alta dimensión. El aprendizaje profundo permite que el modelo identifique relaciones y contextos complejos, lo que lo hace muy eficaz para tareas de procesamiento de lenguaje natural y análisis de imágenes. El modelo está optimizado para mejorar la precisión en la detección, segmentación y clasificación de células.

En su estudio, los investigadores compararon el rendimiento de CelloType con varios métodos tradicionales que utilizan conjuntos de datos de tejidos tanto animales como humanos. Los enfoques tradicionales suelen seguir un proceso de dos etapas de segmentación seguida de clasificación, que puede ser ineficiente e inexacto. Por el contrario, CelloType emplea una estrategia de aprendizaje multitarea que integra tanto la segmentación como la clasificación en un solo paso, lo que mejora la eficiencia y la precisión. CelloType también superó los métodos de segmentación existentes en diferentes tipos de imágenes, incluidas imágenes naturales, imágenes con luz brillante e imágenes de fluorescencia. Para la clasificación del tipo de célula, el estudio, publicado en Nature Methods, demostró que CelloType superó un modelo compuesto por métodos individuales de última generación y un modelo de segmentación de instancias de alto rendimiento, que utiliza IA para delinear con precisión los objetos en una imagen. Además, utilizando una imagen de tejido multiplexada (un tipo de imagen biomédica avanzada que muestra múltiples biomarcadores en una sola muestra de tejido), los investigadores demostraron cómo CelloType puede realizar una segmentación y clasificación a múltiples escalas de componentes celulares y no celulares dentro de un tejido. Esta capacidad permite un análisis más detallado de estructuras celulares pequeñas y grandes, agilizando significativamente el proceso.

"Estamos apenas empezando a descubrir el potencial de esta tecnología", afirmó el Dr. Kai Tan, autor principal del estudio y profesor del Departamento de Pediatría del CHOP. "Este enfoque podría redefinir la forma en que entendemos los tejidos complejos a nivel celular, allanando el camino para avances transformadores en el ámbito de la atención médica".

Miembro Oro
ANALIZADOR DE GASES EN SANGRE
GEM Premier 7000 with iQM3
Miembro Oro
Turnkey Packaging Solution
HLX
New
Hematology Analyzer
BH-6180
New
Lysing Machine
FastPrep-24 5G

Print article

Canales

Hematología

ver canal
Imagen: la nueva prueba podría mejorar la práctica de trasplante y transfusión especializados, así como los bancos sanguínos (Foto cortesía de NHS Blood and Transplant )

Nueva prueba evalúa capacidad de los glóbulos rojos para transportar oxígeno midiendo su forma

La liberación de oxígeno por parte de los glóbulos rojos es un proceso fundamental para la oxigenación de los tejidos del cuerpo, incluidos los órganos y los músculos,... Más

Inmunología

ver canal
Imagen: Concepto para el dispositivo. Las células B de memoria capaces de unir el virus de la influenza permanecen atascadas en los canales a pesar de las fuerzas de corte (Foto cortesía de Steven George/UC Davis)

Dispositivo basado en chip microfluídico mide inmunidad viral

Cada invierno surge una nueva variante de la gripe que supone un reto para el sistema inmunitario. Las personas que ya han sido infectadas o vacunadas contra la gripe pueden tener cierto nivel de protección,... Más

Microbiología

ver canal
Imagen: el lector de iFast escanea 5.000 bacterias individuales con cada muestra analizada en menos de un minuto (foto cortesía de iFAST)

Sistema de PSA de alto rendimiento utiliza tecnología de microchip para analizar muestras bacterianas

Las bacterias se están volviendo cada vez más resistentes a los antibióticos, con niveles de resistencia que van del 20 % al 98 %, y estos niveles son impredecibles.... Más

Tecnología

ver canal
Imagen: métodos de muestreo de proteínas de película de lágrimas humanas (Foto cortesía de Clinical Proteomics. 2024, 13 de marzo; 21: 23. doi: 10.1186/s12014-024-09475-8)

Nuevo método analiza lágrimas para detectar enfermedades de forma temprana

Los fluidos corporales, incluidas las lágrimas y la saliva, transportan proteínas que se liberan desde diferentes partes del cuerpo. La presencia de proteínas específicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.