Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Prueba de sangre basada en IA detecta cáncer de ovario con 93 % de precisión

Por el equipo editorial de LabMedica en español
Actualizado el 13 Feb 2024
Print article
Imagen: Micrografía de un tumor de ovario mucinoso (Fotografía cortesía de los Institutos Nacionales de Salud)
Imagen: Micrografía de un tumor de ovario mucinoso (Fotografía cortesía de los Institutos Nacionales de Salud)

El cáncer de ovario, a menudo denominado el asesino silencioso, normalmente no presenta síntomas en sus etapas iniciales, lo que lleva a una detección tardía cuando el tratamiento se vuelve desafiante. El marcado contraste en las tasas de supervivencia resalta la necesidad urgente de un diagnóstico temprano: si bien las pacientes con cáncer de ovario en etapa avanzada tienen una tasa de supervivencia a cinco años de alrededor del 31 % después del tratamiento, la detección y el tratamiento tempranos pueden elevar esta tasa a más del 90 %. A pesar de más de tres décadas de investigación, desarrollar una prueba de diagnóstico temprano precisa para el cáncer de ovario ha resultado un desafío. Esta dificultad surge de los orígenes moleculares de la enfermedad, donde múltiples vías pueden conducir al mismo tipo de cáncer.

Los científicos del Centro Integrado de Investigación del Cáncer de Georgia Tech (CICR, Atlanta, GA, EUA) han logrado un gran avance al integrar el aprendizaje automático con información de metabolitos sanguíneos, desarrollando una prueba que puede detectar el cáncer de ovario con una precisión del 93 % en su grupo de estudio. Esta prueba supera a los métodos de detección existentes, especialmente en la identificación de enfermedades ováricas en etapa temprana entre mujeres clínicamente consideradas normales. Los investigadores han creado un nuevo método de diagnóstico, utilizando el perfil metabólico de una paciente para asignar una probabilidad más precisa de la presencia o ausencia de la enfermedad.

La espectrometría de masas, utilizada para identificar metabolitos en la sangre a través de su masa y carga, enfrenta una limitación: menos del 7 % de estos metabolitos en la sangre humana han sido caracterizados químicamente. Por lo tanto, identificar procesos moleculares específicos detrás del perfil metabólico de un individuo sigue siendo un desafío. Sin embargo, el equipo reconoció el potencial de utilizar la presencia de distintos metabolitos, detectados por espectrometría de masas, para crear modelos predictivos precisos mediante el aprendizaje automático. Este método es similar al uso de rasgos faciales individuales para desarrollar algoritmos de reconocimiento facial.

En su método innovador, los investigadores combinaron perfiles metabólicos con clasificadores de aprendizaje automático, logrando una precisión del 93 % en un estudio en el que participaron 564 mujeres de Georgia, Carolina del Norte, Filadelfia y el oeste de Canadá. Este grupo incluyó a 431 pacientes con cáncer de ovario activo y 133 mujeres sin la enfermedad. Los estudios en curso tienen como objetivo explorar la capacidad de la prueba para detectar enfermedades en etapas muy tempranas en mujeres asintomáticas. La visión para la aplicación clínica es un futuro en el que las personas con un perfil metabólico que indica una baja probabilidad de cáncer se sometan a un seguimiento anual, mientras que aquellas con puntuaciones que sugieren una alta probabilidad de cáncer de ovario reciban un seguimiento más frecuente o una derivación inmediata para pruebas de detección avanzadas.

"Este enfoque personalizado y probabilístico para el diagnóstico del cáncer es más informativo y preciso desde el punto de vista clínico que las pruebas binarias tradicionales (sí/no)", afirmó John McDonald, profesor emérito de la Facultad de Ciencias Biológicas, director fundador del CICR y autor correspondiente del estudio. "Representa una nueva dirección prometedora en la detección temprana del cáncer de ovario, y quizás también de otros cánceres".

Enlaces relacionados:
Georgia Tech

Miembro Oro
CONTROLADOR DE PIPETA SEROLÓGICA
PIPETBOY GENIUS
Miembro Oro
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Washer Disinfector
Tiva 8
New
Epstein-Barr Virus Test
ZEUS IFA Epstein-Barr Virus VCA IgG Test

Print article

Canales

Hematología

ver canal
Imagen: la nueva prueba podría mejorar la práctica de trasplante y transfusión especializados, así como los bancos sanguínos (Foto cortesía de NHS Blood and Transplant )

Nueva prueba evalúa capacidad de los glóbulos rojos para transportar oxígeno midiendo su forma

La liberación de oxígeno por parte de los glóbulos rojos es un proceso fundamental para la oxigenación de los tejidos del cuerpo, incluidos los órganos y los músculos,... Más

Inmunología

ver canal
Imagen: Concepto para el dispositivo. Las células B de memoria capaces de unir el virus de la influenza permanecen atascadas en los canales a pesar de las fuerzas de corte (Foto cortesía de Steven George/UC Davis)

Dispositivo basado en chip microfluídico mide inmunidad viral

Cada invierno surge una nueva variante de la gripe que supone un reto para el sistema inmunitario. Las personas que ya han sido infectadas o vacunadas contra la gripe pueden tener cierto nivel de protección,... Más

Microbiología

ver canal
Imagen: el lector de iFast escanea 5.000 bacterias individuales con cada muestra analizada en menos de un minuto (foto cortesía de iFAST)

Sistema de PSA de alto rendimiento utiliza tecnología de microchip para analizar muestras bacterianas

Las bacterias se están volviendo cada vez más resistentes a los antibióticos, con niveles de resistencia que van del 20 % al 98 %, y estos niveles son impredecibles.... Más

Patología

ver canal
Imagen: estas imágenes muestran la alta resolución lograda con la nueva técnica de microscopía (Foto cortesía de Cao, R. et al. Science Advance, 2024. Caltech)

Nueva técnica de microscopía permite a cirujanos analizar rápidamente tumores en el quirófano

El método estándar actual para obtener rápidamente muestras y obtener imágenes de tejido durante una cirugía implica tomar una biopsia, congelar la muestra, teñirla... Más

Tecnología

ver canal
Imagen: métodos de muestreo de proteínas de película de lágrimas humanas (Foto cortesía de Clinical Proteomics. 2024, 13 de marzo; 21: 23. doi: 10.1186/s12014-024-09475-8)

Nuevo método analiza lágrimas para detectar enfermedades de forma temprana

Los fluidos corporales, incluidas las lágrimas y la saliva, transportan proteínas que se liberan desde diferentes partes del cuerpo. La presencia de proteínas específicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.