Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Algoritmos de inteligencia artificial potenciados por aprendizaje profundo mejoran la precisión en el diagnóstico de cáncer de piel

Por el equipo editorial de LabMedica en español
Actualizado el 10 May 2024
Print article
Imagen: La IA puede mejorar la precisión de los diagnósticos de cáncer de piel (foto cortesía de 123RF)
Imagen: La IA puede mejorar la precisión de los diagnósticos de cáncer de piel (foto cortesía de 123RF)

Algoritmos de inteligencia artificial (IA) se utilizan cada vez más en diversos entornos clínicos, como la dermatología. Estos algoritmos se desarrollan entrenando una computadora con cientos de miles o millones de imágenes de diversas afecciones de la piel, cada una etiquetada con detalles como el diagnóstico y los resultados del paciente. A través de un proceso conocido como aprendizaje profundo, la computadora aprende a identificar patrones en las imágenes que son indicativos de enfermedades específicas de la piel, incluidos los cánceres. Una vez suficientemente entrenado, el algoritmo puede sugerir diagnósticos potenciales basados en nuevas imágenes de la piel de un paciente. Sin embargo, estos algoritmos no funcionan de forma aislada; se utilizan bajo la supervisión de médicos que evalúan al paciente, realizan sus propias valoraciones diagnósticas y deciden si seguir las recomendaciones del algoritmo.

Ahora, un nuevo estudio dirigido por investigadores de Stanford Medicine (Stanford, CA, EUA) ha descubierto que los algoritmos de inteligencia artificial, que utilizan el aprendizaje profundo, pueden mejorar la precisión del diagnóstico de cánceres de piel. Este beneficio se extiende a los dermatólogos, aunque la mejora es más pronunciada para los no dermatólogos. El estudio analizó 12 estudios de investigación que documentaron más de 67.000 evaluaciones de posibles cánceres de piel realizadas por varios profesionales médicos, con y sin asistencia de IA. Los hallazgos indicaron que los profesionales de la salud sin el apoyo de la IA diagnosticaron con precisión aproximadamente el 75 % de los casos reales de cáncer de piel e identificaron correctamente alrededor del 81,5 % de las afecciones no cancerosas que se parecían al cáncer. El desempeño de los profesionales de la salud mejoró cuando utilizaron la IA para ayudar con los diagnósticos. Su sensibilidad aumentó hasta aproximadamente el 81,1% y su especificidad hasta el 86,1 %.

Aunque estas mejoras pueden parecer modestas, son cruciales para diagnosticar correctamente a los pacientes a quienes se les dice erróneamente que no tienen cáncer cuando sí lo tienen, o a quienes se les informa incorrectamente que tienen cáncer cuando no lo tienen. El análisis reveló además que los estudiantes de medicina, las enfermeras practicantes y los médicos de atención primaria fueron los que más obtuvieron la asistencia de la IA, con mejoras promedio de aproximadamente 13 puntos en sensibilidad y 11 puntos en especificidad. Si bien los dermatólogos y residentes de dermatología ya mostraron una mayor precisión general, su desempeño diagnóstico también obtuvo ganancias en sensibilidad y especificidad con la asistencia de la IA. Los investigadores ahora buscan explorar más a fondo el potencial y los desafíos de integrar herramientas de IA en la atención médica, centrándose particularmente en cómo las percepciones y actitudes de los médicos y pacientes hacia la IA podrían afectar su adopción.

"Los estudios anteriores se han centrado en cómo funciona la IA en comparación con los médicos", dijo la investigadora postdoctoral Jiyeong Kim, PhD. "Nuestro estudio comparó a los médicos que trabajan sin asistencia de IA con los médicos que utilizan IA para diagnosticar cánceres de piel".

Enlaces relacionados:
Medicina de Stanford

Miembro Oro
Hematology Analyzer
Swelab Lumi
Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
New
STI Test
cobas TV/MG
New
Hematology Analyzer
XS-500i

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: el ensayo de vanguardia se procesa los instrumentos iSYSTM o i10 TM de acceso aleatorio (Foto cortesía de EUROIMMUN)

Prueba automatizada de testosterona libre mejora capacidades de diagnóstico de trastornos androgénicos

Un ensayo de última generación ofrece una medición directa de los niveles de testosterona libre en una sola prueba, mejorando significativamente las capacidades de diagnóstico... Más

Microbiología

ver canal
Imagen: el sistema innovador ofrece una forma más rápida de diagnosticar infecciones transmitidas por la sangre (foto cortesía de Melio)

Plataforma sin cultivo identifica rápidamente infecciones del torrente sanguíneo

La sepsis neonatal es una enfermedad potencialmente mortal que se produce por infecciones del torrente sanguíneo en recién nacidos menores de 28 días. Debido a que su sistema inmunitario... Más

Tecnología

ver canal
Imagen: métodos de muestreo de proteínas de película de lágrimas humanas (Foto cortesía de Clinical Proteomics. 2024, 13 de marzo; 21: 23. doi: 10.1186/s12014-024-09475-8)

Nuevo método analiza lágrimas para detectar enfermedades de forma temprana

Los fluidos corporales, incluidas las lágrimas y la saliva, transportan proteínas que se liberan desde diferentes partes del cuerpo. La presencia de proteínas específicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.