Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Modelo de aprendizaje automático calcula éxito de quimioterapia en pacientes con cáncer de hueso

Por el equipo editorial de LabMedica en español
Actualizado el 17 Jan 2024
Print article
Imagen: Una imagen microscópica del osteosarcoma intramedular (Fotografía cortesía de Johns Hopkins Medicine)
Imagen: Una imagen microscópica del osteosarcoma intramedular (Fotografía cortesía de Johns Hopkins Medicine)

El cálculo del porcentaje de necrosis (PN), la proporción de un tumor considerado inactivo o "muerto" después de la quimioterapia, sirve como un predictor vital de los resultados de supervivencia en el osteosarcoma, un tipo de cáncer de huesos. Por ejemplo, una PN del 99 % significa que el 99 % del tumor está muerto, lo que indica la respuesta positiva del paciente a la quimioterapia y perspectivas de supervivencia potencialmente mejores. Los patólogos suelen evaluar la PN examinando, interpretando y marcando meticulosamente imágenes de portaobjetos completos (WSI), que son secciones transversales detalladas de muestras (como tejido óseo) preparadas para un examen microscópico. Sin embargo, este método tradicional no sólo requiere mucho tiempo y experiencia especializada, sino que también sufre una variabilidad significativa entre los observadores. Esto significa que dos patólogos podrían informar estimaciones de PN diferentes de la misma WSI. Ahora, un modelo de aprendizaje automático creado y entrenado para calcular el PN ha demostrado que su cálculo fue 85 % correcto en comparación con los resultados de un patólogo musculoesquelético, y la precisión mejoró al 99 % al excluir un valor atípico.

Un equipo de investigación de Johns Hopkins Medicine (Baltimore, MD, EUA) está desarrollando un modelo de aprendizaje automático "débilmente supervisado", que no requiere muchos datos anotados para su entrenamiento. Al hacerlo, un patólogo sólo necesitaría proporcionar WSI parcialmente anotados, lo que aliviaría significativamente su carga de trabajo. Para desarrollar el modelo de aprendizaje automático, el equipo comenzó recopilando WSI de pacientes con osteosarcoma intramedular (que se origina dentro del hueso) tratados con quimioterapia y cirugía entre 2011 y 2021. Luego, un patólogo musculoesquelético etiquetó parcialmente tres tipos de tejido en estas WSI: tumor activo, tumor muerto y tejido no tumoral y también proporcionó una estimación de PN para cada caso. Estos datos formaron la base para el entrenamiento del modelo.

El modelo fue entrenado para reconocer y categorizar patrones de imágenes. Las WSI se segregaron en miles de parches más pequeños, se dividieron en grupos según las etiquetas del patólogo y luego alimentaron al modelo. Este proceso tuvo como objetivo proporcionar al modelo un marco de referencia más sólido en lugar de simplemente alimentarlo con una gran WSI. Al finalizar el entrenamiento, el modelo se probó junto con el patólogo musculoesquelético en seis WSI de dos pacientes. Los resultados demostraron una correlación del 85 % en los cálculos de PN y el etiquetado de tejidos entre el modelo y el patólogo. Sin embargo, el modelo tuvo dificultades para etiquetar el cartílago con precisión, lo que generó un valor atípico como resultado de la abundancia de cartílago en una WSI. Cuando se eliminó este valor atípico, la correlación se elevó al 99 %. El trabajo futuro se centrará en incorporar tejido cartilaginoso en el entrenamiento del modelo y ampliar la gama de WSI para abarcar varios tipos de osteosarcoma, no solo el intramedular.

"Si este modelo fuera validado y producido, podría ayudar a acelerar la evaluación de la efectividad de la quimioterapia en un paciente y, por lo tanto, brindarle una estimación del pronóstico con anterioridad", dijo la Dra. Christa LiBrizzi, coprimera autora del estudio y residente del Departamento de Cirugía Ortopédica de Johns Hopkins Medicine. "Eso reduciría los costos de atención médica, así como la carga laboral de los patólogos musculoesqueléticos".

Enlaces relacionados:
Johns Hopkins Medicine

New
Miembro Oro
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Rocking Shaker
HumaRock

Print article

Canales

Química Clínica

ver canal
Imagen: La nueva prueba basada en saliva para insuficiencia cardíaca mide dos biomarcadores en aproximadamente 15 minutos (foto cortesía de Trey Pittman)

Dispositivo de pruebas de saliva predice la insuficiencia cardíaca en 15 minutos

La insuficiencia cardíaca es una enfermedad grave en la que el músculo cardíaco no puede bombear suficiente sangre rica en oxígeno a todo el cuerpo. Se considera una de las... Más

Hematología

ver canal
Imagen: La tecnología de teléfonos inteligentes mide los niveles de hemoglobina en sangre de una foto digital del párpado interno (Foto cortesía de la Universidad de Purdue)

Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC

Las pruebas de hemoglobina en sangre se encuentran entre las pruebas de sangre que se realizan con más frecuencia, ya que los niveles de hemoglobina pueden brindar información vital sobre... Más

Inmunología

ver canal
Imagen: Bajo un microscopio, la reparación del ADN es visible como manchas verdes brillantes ("foci") en la célula de ADN teñida de azul. El naranja resalta las células cancerosas en crecimiento (Foto cortesía de WEHI)

Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario

Cada año, cientos de miles de mujeres en todo el mundo son diagnosticadas con cáncer de ovario y de mama. La terapia con inhibidores de PARP (PARPi) ha sido un gran avance en el tratamiento... Más

Microbiología

ver canal
Imagen: el dímero HNL puede ser una herramienta clínica novedosa y potencialmente útil en la administración de antibióticos en sepsis (Foto cortesía de Shutterstock)

Biomarcador sanguíneo único demuestra que controla eficazmente tratamiento de sepsis

La sepsis sigue siendo un problema creciente en todo el mundo, vinculado a altas tasas de mortalidad y morbilidad. El diagnóstico oportuno y preciso, junto con una terapia de apoyo eficaz, es esencial... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.