Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Nuevo método basado en IA para el análisis de tejidos mejora la comprensión de la patología de enfermedades

Por el equipo editorial de LabMedica en español
Actualizado el 18 Jun 2024
Print article
Imagen: El nuevo método estadístico impulsado por IA tiene el potencial de mejorar la investigación de tejidos y enfermedades (foto cortesía de 123RF)
Imagen: El nuevo método estadístico impulsado por IA tiene el potencial de mejorar la investigación de tejidos y enfermedades (foto cortesía de 123RF)

Científicos de la Universidad de Brown (Providence, RI, EUA) y la Universidad de Michigan (Ann Arbor, MI, EUA) han creado una técnica computacional innovadora para examinar datos complejos de tejidos, revolucionando potencialmente nuestra comprensión de las enfermedades y su tratamiento. El método, conocido como segmentación de tejidos integradora e informada por referencia (IRIS), utiliza aprendizaje automático e inteligencia artificial para proporcionar a los investigadores biomédicos información precisa sobre el desarrollo de tejidos, la patología de las enfermedades y la estructura de los tumores. IRIS emplea datos de transcriptómica resuelta espacialmente (SRT) e incorpora datos de secuenciación de ARN unicelular como referencia. Este enfoque permite el examen simultáneo de múltiples capas de tejido e identifica con precisión diferentes regiones con una velocidad y precisión computacional excepcionales. A diferencia de los métodos tradicionales que ofrecen datos promediados de muestras de tejido, la SRT ofrece una perspectiva mucho más detallada, localizando miles de puntos específicos dentro de una sola sección de tejido.

El manejo de conjuntos de datos vastos y complejos siempre ha planteado desafíos importantes, IRIS los aborda mediante el uso de algoritmos para examinar los datos, segmentando varios dominios funcionales, como áreas tumorales, y arrojando luz sobre las interacciones celulares y la dinámica de la progresión de la enfermedad. A diferencia de los métodos existentes, IRIS mapea directamente la composición celular de los tejidos y delinea dominios espaciales biológicamente significativos, mejorando la comprensión de las actividades celulares que impulsan las funciones de los tejidos. Los desarrolladores de IRIS lo probaron en seis conjuntos de datos SRT, evaluando su eficacia en comparación con otros métodos de análisis de dominio espacial. A medida que las tecnologías SRT ganen fuerza y se utilicen más ampliamente, los creadores de IRIS anticipan que contribuirá a identificar nuevos puntos de intervención clínica u objetivos farmacéuticos, mejorando así las estrategias de tratamiento personalizadas y, en última instancia, mejorando los resultados de salud de los pacientes.

"El enfoque computacional de IRIS es pionero en una nueva vía para que los biólogos profundicen en la intrincada arquitectura de tejidos complejos, ofreciendo oportunidades incomparables para explorar los procesos dinámicos que dan forma a la estructura del tejido durante el desarrollo y la progresión de la enfermedad", dijo Xiang Zhou, profesor de bioestadística en la Escuela de Salud Pública de la Universidad de Michigan. "Al caracterizar estructuras de tejido refinadas y dilucidar sus alteraciones durante estados patológicos, IRIS tiene el potencial de revelar conocimientos mecanicistas cruciales para comprender y combatir diversas enfermedades". Los hallazgos de los investigadores se publicaron en la revista Nature Methods el 6 de junio de 2024.

Enlaces relacionados:
Universidad Brown
Universidad de Michigan

Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunoassays and Calibrators
QMS Tacrolimus Immunoassays
New
Miembro Oro
Human Chorionic Gonadotropin Test
hCG Quantitative - R012

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.