Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Nuevo método basado en IA para el análisis de tejidos mejora la comprensión de la patología de enfermedades

Por el equipo editorial de LabMedica en español
Actualizado el 18 Jun 2024
Print article
Imagen: El nuevo método estadístico impulsado por IA tiene el potencial de mejorar la investigación de tejidos y enfermedades (foto cortesía de 123RF)
Imagen: El nuevo método estadístico impulsado por IA tiene el potencial de mejorar la investigación de tejidos y enfermedades (foto cortesía de 123RF)

Científicos de la Universidad de Brown (Providence, RI, EUA) y la Universidad de Michigan (Ann Arbor, MI, EUA) han creado una técnica computacional innovadora para examinar datos complejos de tejidos, revolucionando potencialmente nuestra comprensión de las enfermedades y su tratamiento. El método, conocido como segmentación de tejidos integradora e informada por referencia (IRIS), utiliza aprendizaje automático e inteligencia artificial para proporcionar a los investigadores biomédicos información precisa sobre el desarrollo de tejidos, la patología de las enfermedades y la estructura de los tumores. IRIS emplea datos de transcriptómica resuelta espacialmente (SRT) e incorpora datos de secuenciación de ARN unicelular como referencia. Este enfoque permite el examen simultáneo de múltiples capas de tejido e identifica con precisión diferentes regiones con una velocidad y precisión computacional excepcionales. A diferencia de los métodos tradicionales que ofrecen datos promediados de muestras de tejido, la SRT ofrece una perspectiva mucho más detallada, localizando miles de puntos específicos dentro de una sola sección de tejido.

El manejo de conjuntos de datos vastos y complejos siempre ha planteado desafíos importantes, IRIS los aborda mediante el uso de algoritmos para examinar los datos, segmentando varios dominios funcionales, como áreas tumorales, y arrojando luz sobre las interacciones celulares y la dinámica de la progresión de la enfermedad. A diferencia de los métodos existentes, IRIS mapea directamente la composición celular de los tejidos y delinea dominios espaciales biológicamente significativos, mejorando la comprensión de las actividades celulares que impulsan las funciones de los tejidos. Los desarrolladores de IRIS lo probaron en seis conjuntos de datos SRT, evaluando su eficacia en comparación con otros métodos de análisis de dominio espacial. A medida que las tecnologías SRT ganen fuerza y se utilicen más ampliamente, los creadores de IRIS anticipan que contribuirá a identificar nuevos puntos de intervención clínica u objetivos farmacéuticos, mejorando así las estrategias de tratamiento personalizadas y, en última instancia, mejorando los resultados de salud de los pacientes.

"El enfoque computacional de IRIS es pionero en una nueva vía para que los biólogos profundicen en la intrincada arquitectura de tejidos complejos, ofreciendo oportunidades incomparables para explorar los procesos dinámicos que dan forma a la estructura del tejido durante el desarrollo y la progresión de la enfermedad", dijo Xiang Zhou, profesor de bioestadística en la Escuela de Salud Pública de la Universidad de Michigan. "Al caracterizar estructuras de tejido refinadas y dilucidar sus alteraciones durante estados patológicos, IRIS tiene el potencial de revelar conocimientos mecanicistas cruciales para comprender y combatir diversas enfermedades". Los hallazgos de los investigadores se publicaron en la revista Nature Methods el 6 de junio de 2024.

Enlaces relacionados:
Universidad Brown
Universidad de Michigan

Miembro Oro
ANALIZADOR DE VIABILIDAD/DENSIDAD CELULAR AUTOMATIZADO
BioProfile FAST CDV
New
Miembro Oro
Chagas Disease Test
CHAGAS Cassette
New
DVT/PE Test
VIDAS D-DIMER EXCLUSION II
New
PROM Test
AMNIOQUICK DUO

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: una sección de resonancia magnética coronal muestra una lesión de ultrasonido enfocada de alta intensidad en el tálamo izquierdo del cerebro (foto cortesía del UT Southwestern Medical Center)

Biomarcadores de ACV recientemente identificados abren camino a análisis de sangre para diagnosticar rápidamente lesiones cerebrales

Cada año, casi 800.000 personas en los EUA sufren un accidente cerebrovascular, que ocurre cuando el flujo sanguíneo a áreas específicas del cerebro es insuficiente, lo que... Más

Inmunología

ver canal
Imagen: el descubrimiento de biomarcadores podría mejorar el tratamiento del cáncer de endometrio (foto cortesía del Monte Sinai)

Simple análisis de sangre ayudaría a elegir mejores tratamientos para pacientes con cáncer de endometrio recurrente

El cáncer de endometrio, que se desarrolla en el revestimiento del útero, es el cáncer ginecológico más frecuente en los Estados Unidos y afecta a más de 66.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.